The glaciated Mount Rainier volcano in southwestern Washington State (United States) has a rich history of outburst floods and debris flows that have adversely impacted infrastructure at Mount Rainier National Park in the 20th and 21st centuries. Retreating glaciers leave behind vast amounts of unconsolidated till that is easily mobilized during high-precipitation-intensity storms in the fall months, and during outburst floods during warm summer months. Over 60 debris flows and outburst floods have been documented between 1926 and 2019 at Mount Rainier. Debris-flow activity has led to the closure of campgrounds and visitor destinations, which has limited visitor access to large swaths of the park. This paper documents efforts to characterize and seismically monitor debris flows, map hazards, and develop forecasting approaches for wet and dry weather debris flows. Using the day-of and historic antecedent weather conditions on past debris-flow days, we developed a debris-flow hazard model to help predict those days with a higher relative hazard for debris-flow activity park-wide based on prevailing and forecasted weather conditions. Debris flows are detected in near-real-time using the U.S. Geological Survey Real-time Seismic Amplitude Measurement (RSAM) tool. If an event is detected, we can then provide evacuation alerts to employees and visitors working and recreating in the areas downstream. Our goal is to accurately forecast the debris-flow hazards up to 7 days ahead of time and then use RSAM to detect debris flows within minutes of their genesis.
This study presents a growth curve developed from direct and indirect growth rates of Rhizocarpon geographicum lichens from study sites on Mounts Baker, Rainier, Adams, and Hood in the northern Cascade Range of the western USA. Our observations of direct growth rates are based on 31 measurements of 11 lichens growing on different surfaces. This direct growth rate dataset is complemented by indirect growth rates based on measurements of the largest lichen observed on 20 different surfaces over 24-33-yr periods. The direct and indirect datasets produce statistically indistinguishable mean radial growth rates of 0.48 and 0.50 mm yr −1 , respectively. Statistical analysis of zero and first order fits of our growth rate data suggests that lichen growth is best characterized by the average of our mean growth rate (zero order) models at 0.49 mm yr −1 . Our revised growth curve for the study area extends the applicable range for dating rock surface in the study area to the seventeenth century, approximately 175 years longer than previous calibrated curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.