In spite of its proven heuristic value, the dopamine hypothesis of schizophrenia is now yielding to a multifactorial view, in which the other monoamines as well as glutamate and GABA are included, with a focus on neurotransmitter interactions in complex neurocircuits. The primary lesion(s) in schizophrenia does not necessarily involve any of these neurotransmitters directly but could deal with a more general defect, such as a faulty connectivity of developmental origin. Nevertheless, a precise identification of neurotransmitter aberrations in schizophrenia will probably provide clues for a better understanding of the disease and for the development of new treatment and prevention strategies.
We report on the pharmacological effects of the 20 fold D3 vs. D2 dopamine receptor preferring compound U99194A. It is shown that U99194A increases rat locomotor activity at doses that do not increase release or utilisation of dopamine in the striatum or the nucleus accumbens significantly. The data do not support any direct agonist action of U99194A at dopamine receptors. It is suggested that U99194A can antagonise a population of postsynaptic dopamine receptors involved in the suppression of some aspects of psychomotor activity. These postsynaptic receptors presumably belong to the D3 receptor subtype.
The search for new and improved antipsychotic agents has increased in intensity during the past five years. The era of searching for non-toxic copies of clozapine has been followed by several different lines of research, some of which pursue the traditional dopamine track, although at a higher level of sophistication, whereas others focus on other neurotransmitters, such as serotonin and glutamate. Emerging knowledge about the interactions between different neurotransmitters in complex neurocircuits opens up possibilities for achieving antipsychotic activity by interfering with many different neurotransmitters. Most intriguing is the finding in animal experimental models, indicating that it should be possible to alleviate psychotic conditions by stabilizing rather than paralyzing neurocircuits, thus avoiding the risk of motor and mental side effects of the currently used drugs. Among these new classes, dopaminergic stabilizers and 5-HT2A receptor antagonists appear to offer the most promise at present. In a longer perspective, drugs interfering with glutamate function via different mechanisms may also turn out to be useful, especially in the control of negative symptoms.
A series of (S)-phenylpiperidines in which the substituents on the aromatic ring and nitrogen have been varied has been prepared. They have been evaluated pharmacologically to explore the importance of these substituents for the interaction with central dopamine (DA) receptors. On the basis of biochemical and behavioral data in rats, several of these compounds are characterized as centrally acting DA autoreceptor antagonists. (S)-Phenylpiperidines having an aromatic substituent with a high group dipole moment in the 3-position, i.e., meta with respect to the piperidine ring, and being N-substituted with a propyl group were found to be highly active in vivo on the synthesis and turnover of dopamine. However, they do not induce strong hypoactivity or catalepsy. Interestingly, the most active compounds in vivo were found to display only low affinity for DA D2 and D3 receptors in vitro. In addition, 7-triflate-substituted octahydrobenzo[f]quinolines and 6-triflate-substituted hexahydro-1H-benz[e]indoles have been prepared and pharmacologically evaluated. The trans isomers of these rigid structures were found to display a pharmacological profile similar to that of the flexible phenylpiperidines. The corresponding cis isomers were found to be inactive in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.