A case report involving a 34-year-old white male who was found dead at home by his roommate is presented. At the time of his death, he was being treated with tramadol/acetaminophen, metaxalone, oxycodone, and amitriptyline. The decedent's mother stated that he had been taking increasing amounts of pain medication in order to sleep at night. There were no significant findings at autopsy; however, toxicology results supported a cause and manner of death resulting from suicidal mixed tramadol and amitriptyline toxicity. This case reports the tissue and fluid distribution of tramadol, amitriptyline, and their metabolites in an acutely fatal ingestion in an effort to document concentrations of these analytes in 12 matrices with respect to one another to assist toxicologists in difficult interpretations.
On November 25, 2008, the U.S. Department of Health and Human Services posted a final notice in the Federal Register authorizing the use of liquid chromatography-tandem mass spectrometry (LC-MS-MS) and other technologies in federally regulated workplace drug testing (WPDT) programs. These rules are expected to become effective in May 2010. To support this change, it is essential to explicitly demonstrate that LC-MS-MS as a technology can produce results at least as valid as gas chromatography-mass spectrometry (GC-MS), the long-accepted standard in confirmatory analytical technologies for drugs of abuse and currently the only confirmatory method allowed for use in support of federally regulated WPDT programs. A series of manufactured control urine samples (n = 10 for each analyte) containing benzoylecgonine, morphine, codeine, and 6-acetylmorphine at concentrations ranging from 10% to 2000% of federal cutoffs were analyzed with replication by five federally regulated laboratories using GC-MS (five replicate analyses per lab) and at RTI International using LC-MS-MS (10 replicate analyses). Interference samples as described in the National Laboratory Certification Program 2009 Manual were also analyzed by both GC-MS and LC-MS-MS. In addition, matrix effects were assessed for LC-MS-MS, and both analytical technologies were used to analyze previously confirmed urine specimens of WPDT origin. Results indicated that LC-MS-MS analysis produced results at least as precise, accurate, and specific as GC-MS for the analytes investigated in this study. Matrix effects, while evident, could be controlled by the use of matrix-matched controls and calibrators with deuterated internal standards. LC-MS-MS data parameters, such as retention time and product ion ratios, were highly reproducible.
On November 25, 2008, the U.S. Department of Health and Human Services posted a final notice in the Federal Register authorizing the use of liquid chromatography-tandem mass spectrometry (LC-MS-MS) and other technologies in federally regulated workplace drug testing (WPDT) programs. To support this change, it is essential to explicitly demonstrate that LC-MS-MS, as a technology, can produce results at least as valid as gas chromatography (GC)-MS, the long-accepted standard in confirmatory analytical technologies for drugs of abuse. A series of manufactured control urine samples (n = 10 for each analyte) containing amphetamine, methamphetamine, (±)-3,4-methylenedioxyamphetamine, (±)-3,4-methylenedioxymethamphetamine, (±)-3,4-methylenedioxyethylamphetamine, phencyclidine, and (±)-11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol at concentrations ranging from 10% to 2000% of federal cutoffs were analyzed with replication by five federally regulated laboratories using GC-MS and at RTI International using LC-MS-MS. Interference samples as described in the National Laboratory Certification Program 2009 Manual were analyzed by GC-MS and LC-MS-MS as well as previously confirmed urine specimens of WPDT origin. Matrix effects were assessed for LC-MS-MS. Results indicated that LC-MS-MS analysis produced results at least as precise, accurate, and specific as GC-MS for the analytes investigated in this study. Matrix effects, while evident, could be controlled by the use of matrix-matched controls and calibrators with deuterated internal standards.
The National Forensic Laboratory Information System (NFLIS) is a program of the U.S. Drug Enforcement Administration, Diversion Control Division. The NFLIS-Drug component collects drug identification results and associated information from drug cases submitted to and analyzed by federal, state, and local forensic laboratories. This paper presents national annual estimates and national and regional yearly trend differences for clonazepam, diazepam, flubromazolam, clonazolam, and etizolam using annual report rates per 100,000 persons aged 15 or older between 2015 and 2018. An estimated 263,538 benzodiazepine reports were identified by state and local laboratories between 2015 and 2018. Methamphetamine, cocaine, and heroin accounted for 32% of the drugs reported in the same item as alprazolam. Depressants and tranquilizers and narcotic analgesics were the drug classes most frequently identified in the same item as etizolam. A timeline of some benzodiazepines’ emergence in NFLIS-Drug is shown, as well as state- and county-level data for selected benzodiazepines.
Recent advances in analytical capabilities allowing for the identification and quantification of drugs and metabolites in small volumes at low concentrations have made oral fluid a viable matrix for drug testing. Oral fluid is an attractive matrix option due to its relative ease of collection, reduced privacy concerns for observed collections and difficulty to adulterate. The work presented here details the development and validation of a liquid chromatography tandem mass spectrometry (LC-MS-MS) method for the quantification of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid. The calibration range is 0.4-150 ng/mL for 6-acetylmorphine and 1.5-350 ng/mL for all other analytes. Within-run and between-run precision were <5% for all analytes except for hydrocodone, which had 6.2 %CV between runs. Matrix effects, while evident, could be controlled using matrix-matched controls and calibrators with deuterated internal standards. The assay was developed in accordance with the proposed mandatory guidelines for opioid confirmation in federally regulated workplace drug testing. The use of neat oral fluid, as opposed to a collection device, enables collection of a single sample that can be split into separate specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.