Dysbiosis, an imbalance in microbial communities, is linked with disease when this imbalance disturbs microbiota functions essential for maintaining health or introduces processes that promote disease. Dysbiosis in disease is predicted when microbiota differ compositionally from a healthy control population, but only truly defined when these differences are mechanistically related to adverse phenotypes. For the human gut microbiota, dysbiosis varies across diseases. One common manifestation is replacement of the complex community of anaerobes typical of the healthy adult gut microbiome with a community of lower overall microbial diversity and increased facultative anaerobes. Here we review diseases in which low-diversity dysbiosis has been observed and mechanistically linked with disease, with a particular focus on liver disease, inflammatory bowel disease, and Clostridium difficile infection.
BackgroundGut microbiome characteristics associated with HIV infection are of intense research interest but a deep understanding has been challenged by confounding factors across studied populations. Notably, a Prevotella-rich microbiome described in HIV-infected populations is now understood to be common in men who have sex with men (MSM) regardless of HIV status, but driving factors and potential health implications are unknown.ResultsHere, we further define the MSM-associated gut microbiome and describe compositional differences between the fecal microbiomes of Prevotella-rich MSM and non-MSM that may underlie observed pro-inflammatory properties. Furthermore, we show relatively subtle gut microbiome changes in HIV infection in MSM and women that include an increase in potential pathogens that is ameliorated with antiretroviral therapy (ART). Lastly, using a longitudinal cohort, we describe microbiome changes that happen after ART initiation.ConclusionsThis study provides an in-depth characterization of microbiome differences that occur in a US population infected with HIV and demonstrates the degree to which these differences may be driven by lifestyle factors, ART, and HIV infection itself. Understanding microbiome compositions that occur with sexual behaviors that are high risk for acquiring HIV and untreated and ART-treated HIV infection will guide the investigation of immune and metabolic functional implications to ultimately target the microbiome therapeutically.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0580-7) contains supplementary material, which is available to authorized users.
The inflammatory properties of the enteric microbiota of Human Immunodeficiency Virus (HIV)-infected individuals are of considerable interest because of strong evidence that bacterial translocation contributes to chronic immune activation and disease progression. Altered enteric microbiota composition occurs with HIV infection but whether altered microbiota composition or increased intestinal permeability alone drives peripheral immune activation is controversial. To comprehensively assess the inflammatory properties of HIV-associated enteric microbiota and relate these to systemic immune activation, we developed methods to purify whole fecal bacterial communities (FBCs) from stool for use in in vitro immune stimulation assays with human cells. We show that the enteric microbiota of untreated HIV-infected subjects induce significantly higher levels of activated monocytes and T cells compared to seronegative subjects. FBCs from anti-retroviral therapy (ART)-treated HIV-infected individuals induced intermediate T cell activation, indicating an only partial correction of adaptive immune cell activation capacity of the microbiome with ART. In vitro activation levels correlated with activation levels and viral load in blood and were particularly high in individuals harboring specific gram-positive opportunistic pathogens. Blockade experiments implicated Tumor Necrosis Factor (TNF)-α and Toll-Like Receptor-2 (TLR2), which recognizes peptidoglycan, as strong mediators of T cell activation; This may contradict a previous focus on lipopolysaccharide as a primary mediator of chronic immune activation. These data support that increased inflammatory properties of the enteric microbiota and not increased permeability alone drives chronic inflammation in HIV.
Summary Zwitterionic capsular polysaccharides (ZPS) are bacterial products that modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). However, only a few diverse bacteria are known to modulate the host immune system via ZPS. We present a genomic screen for bacteria encoding ZPS molecules. We identify diverse host-associated bacteria, including commensals and pathogens with known anti-inflammatory properties, with the capacity to produce ZPSs. Human mononuclear cells stimulated with lysates from putative ZPS-producing bacteria induce significantly greater IL-10 production and higher proportions of Tregs than lysates from non ZPS-encoding relatives or a commensal strain of Bacteroides cellulosilyticus in which a putative ZPS biosynthetic operon was genetically disrupted. Similarly, wild-type B. cellulosilyticus DSM 14838, but not a close relative lacking a putative ZPS, attenuated experimental colitis in mice. Collectively, this screen identifies bacterial strains that may use ZPS to interact with the host as well as those with potential probiotic properties.
Summary From an organismal perspective, cancer cell populations can be considered analogous to parasites that compete with the host for essential systemic resources such as glucose. Here, we employed leukemia models and human leukemia samples to document a form of adaptive homeostasis, where malignant cells alter systemic physiology through impairment of both host insulin sensitivity and insulin secretion to provide tumors with increased glucose. Mechanistically, tumor cells induce high level production of IGFBP1 from adipose tissue to mediate insulin sensitivity. Further, leukemia-induced gut dysbiosis, serotonin loss and incretin inactivation combine to suppress insulin secretion. Importantly, attenuated disease progression and prolonged survival are achieved through disruption of the leukemia-induced adaptive homeostasis. Our studies provide a paradigm for systemic management of leukemic disease. Ye et al. show that leukemia cells hijack host glucose by inducing IGFBP1 production from adipose tissue to mediate insulin sensitivity and by inducing gut dysbiosis, serotonin loss, and incretin inactivation to suppress insulin secretion. Disrupting this adaptive homeostasis attenuates leukemia progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.