Abstract. The Weyl-Kac character formula gives a beautiful closed-form expression for the characters of integrable highest-weight modules of KacMoody algebras. It is not, however, a formula that is combinatorial in nature, obscuring positivity. In this paper we show that the theory of Hall-Littlewood polynomials may be employed to prove Littlewood-type combinatorial formulas for the characters of certain highest weight modules of the affine Lie algebras C n+1 of Macdonald's identities for powers of the Dedekind eta-function. These generalised eta-function identities include the Rogers-Ramanujan, Andrews-Gordon and Göllnitz-Gordon q-series as special, low-rank cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.