Aim: To study whether microvascular leukocyte accumulation after rat renal ischemia and reperfusion (IR) is decreased by Rho kinase inhibition, independently of effects upon nitric oxide (NO) and renal blood flow. Methods: Male Wistar rats were subjected to 60 min of ischemia by bilateral clamping and 60 min of reperfusion of the renal arteries, or a sham procedure. Haemodynamics were monitored and microsphere blood flow to the kidneys was measured. The infusion of the Rho kinase inhibitor (Y27632) was commenced before clamping and IR. The NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), was administered after the start of reperfusion whilst the dopamine-1 receptor agonist fenoldopam, a renal vasodilator, was infused during the reperfusion period. Digital imaging microscopy analysis of cryosections was done to determine leukocyte accumulation and vasodilator-stimulated phosphoprotein serine 239 phosphorylation (p-VASP ser 239), a marker of endothelial NO. Results: Leukocytes (60–70% neutrophils) accumulated within blood vessels in the corticomedullary junction and medulla of the kidney. Leukocyte accumulation was markedly reduced by the Rho kinase inhibitor but not by fenoldopam. However, both drugs improved renal blood flow and microvascular expression of p-VASP ser 239 in the corticomedullary junction and medulla, which were decreased following IR. L-NAME treatment of IR animals pretreated with the Rho kinase inhibitor reduced blood flow and p-VASP ser 239 expression and increased leukocyte accumulation. Conclusion: Early microvascular leukocyte accumulation in the corticomedullary junction and medulla of the rat kidney after IR is ameliorated by Rho kinase inhibition. This effect is partly independent upon attenuation of decreased NO and renal blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.