There is extensive laboratory research studying the effects of acute sleep deprivation on biological and cognitive functions, yet much less is known about naturalistic patterns of sleep loss and the potential impact on daily or weekly functioning of an individual. Longitudinal studies are needed to advance our understanding of relationships between naturalistic sleep and fluctuations in human health and performance, but it is first necessary to understand the efficacy of current tools for long-term sleep monitoring. The present study used wrist actigraphy and sleep log diaries to obtain daily measurements of sleep from 30 healthy adults for up to 16 consecutive weeks. We used non-parametric Bland-Altman analysis and correlation coefficients to calculate agreement between subjectively and objectively measured variables including sleep onset time, sleep offset time, sleep onset latency, number of awakenings, the amount of wake time after sleep onset, and total sleep time. We also examined compliance data on the submission of daily sleep logs according to the experimental protocol. Overall, we found strong agreement for sleep onset and sleep offset times, but relatively poor agreement for variables related to wakefulness including sleep onset latency, awakenings, and wake after sleep onset. Compliance tended to decrease significantly over time according to a linear function, but there were substantial individual differences in overall compliance rates. There were also individual differences in agreement that could be explained, in part, by differences in compliance. Individuals who were consistently more compliant over time also tended to show the best agreement and lower scores on behavioral avoidance scale (BIS). Our results provide evidence for convergent validity in measuring sleep onset and sleep offset with wrist actigraphy and sleep logs, and we conclude by proposing an analysis method to mitigate the impact of non-compliance and measurement errors when the two methods provide discrepant estimates.
Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences.
An event or experience can induce different emotional responses between individuals, including strong variability based on task parameters or environmental context. Physiological correlates of emotional reactivity, as well as related constructs of stress and anxiety, have been found across many physiological metrics, including heart rate and brain activity. However, the interdependances and interactions across contexts and between physiological systems are not well understood. Here, we recruited military and law enforcement to complete two experimental sessions across two different days. In the laboratory session, participants viewed high-arousal negative images while brain activity electroencephalogram (EEG) was recorded from the scalp, and functional connectivity was computed during the task and used as a predictor of emotional response during the other experimental session. In an immersive simulation session, participants performed a shoot-don’t-shoot scenario while heart rate electrocardiography (ECG) was recorded. Our analysis examined the relationship between the sessions, including behavioral responses (emotional intensity ratings, task performance, and self-report anxiety) and physiology from different modalities [brain connectivity and heart rate variability (HRV)]. Results replicated previous research and found that behavioral performance was modulated within-session based on varying levels of emotional intensity in the laboratory session ( t (24) = 4.062, p < 0.0005) and stress level in the simulation session ( Z = 2.45, corrected p -value = 0.0142). Both behavior and physiology demonstrated cross-session relationships. Behaviorally, higher intensity ratings in the laboratory was related to higher self-report anxiety in the immersive simulation during low-stress ( r = 0.465, N = 25, p = 0.019) and high-stress ( r = 0.400, N = 25, p = 0.047) conditions. Physiologically, brain connectivity in the theta band during the laboratory session significantly predicted low-frequency HRV in the simulation session ( p < 0.05); furthermore, a frontoparietal connection accounted for emotional intensity ratings during the attend laboratory condition ( r = 0.486, p = 0.011) and self-report anxiety after the high-stress simulation condition ( r = 0.389, p = 0.035). Interestingly, the predictive power of the brain activity occurred only for the conditions where participants had higher levels of emotional reactivity, stress, or anxiety. Taken together, our findings describe an integrated behavioral and physiological characterization of emotional reactivity.
Network analysis provides new and important insights into the function of complex systems such as the brain by examining structural and functional networks constructed from diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and Electro/Magnetoencephalography (E/MEG) data. Although network models can shed light on cognition and pathology, questions remain regarding the importance of these findings, due in part to the reproducibility of the core measurements and subsequent modeling strategies. In order to ensure that results are reproducible, we need a better understanding of within- and between-subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first investigate the reproducibility of individual brain connections and network measures and find that across all modalities, within-subject reproducibility is higher than between-subject reproducibility, reaffirming the ability to detect individual differences in network structure in both structural and functional human brain networks. We see high variability in the reproducibility of pairwise connections between brain regions, but observe that in EEG-derived networks, during both rest and task, alpha-band connectivity is consistently more reproducible than networks derived from other frequency bands. Further, reproducible connections correspond to strong connections. Structural networks show a higher reliability in network statistics than functional networks, and certain measures such as synchronizability and eigenvector centrality are consistently less reliable than other network measures across all modalities. Finally, we find that structural dMRI networks outperform functional networks in their ability to identify individuals using a fingerprinting analysis. Our results highlight that functional networks likely reflect state-dependent variability not present in structural networks, and that the analysis of either structural or functional networks to study individual differences should depend on whether or not one wants to take into account state dependencies of the observed networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.