We have developed a variable-power zoom system that incorporates fluidic lenses and has no moving parts. The designed system applies two single-chamber plano-convex fluid singlets, each with their own distinct design, as well as a conventional refractive lens. In this paper, we combine the two fluid elements to form a variable-power telescope, while the fixed lens enables image formation. In this configuration, the image plane location is fixed. By synchronizing the powers of the two fluidic lenses, we produce a varying magnification zoom system. The design of each lens and the coupled system is analyzed. The coupled device experimentally produced a magnification range of 0.1× to 10× zoom or a 20× zoom magnification range with no moving parts. Furthermore, we expand on optical performance and capabilities of our system with fluidic lenses relative to traditional zoom lenses.
We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens’ focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.
Ultrafast laser cutting of a glass substrate at an oblique angle is demonstrated using a phase-corrected Bessel beam. Simulations are used to predetermine the ideal phase of the incident Bessel beam such that an unaberrated Bessel beam is formed inside the tilted substrate. Additional corrections to the beam such as shortening, moving the intensity of the beam within the substrate, and the formation of an elliptical focal spot were necessary to ensure consistent chamfering of the substrate and are discussed herein. Three cuts are combined to create a damage tract in the glass substrate in the shape of a chamfer, and then the glass is separated using a C O 2 laser resulting in a chamfered edge.
We have previously introduced an anisotropic leaky-mode modulator as a waveguide-based, acousto-optic solution for spatial light modulation in holographic video display systems. Waveguide fabrication for these and similar surface acoustic wave devices relies on proton exchange of a lithium niobate substrate, which involves the immersion of the substrate in an acid melt. While simple and effective, waveguide depth and index profiles resulting from proton exchange are often non-uniform over the device length or inconsistent between waveguides fabricated at different times using the same melt and annealing parameters. In contrast to proton exchange, direct writing of waveguides has the appeal of simplifying fabrication (as these methods are inherently maskless) and the potential of fine and consistent control over waveguide depth and index profiles. In this paper, we explore femtosecond laser micromachining as an alternative to proton exchange in the fabrication of waveguides for anisotropic leaky-mode modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.