We report on measurements of the linewidth ∆f of THz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution limited measurements indicated that ∆f may be below 1 GHz -much smaller than expected from a purely cavity-induced synchronization. While at low bias we found ∆f to be not smaller than ∼ 500 MHz, at high bias, where a hotspot coexists with regions which are still superconducting, ∆f turned out to be as narrow as 23 MHz. We attribute this to the hotspot acting as a synchronizing element. ∆f decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or ESR, but hard to explain in standard electrodynamic models of Josephson junctions.
We have combined a stand-alone Bi2Sr2CaCu2O8 intrinsic Josephson junction stack, emitting terahertz radiation, with a YBa2Cu3O7 grain boundary Josephson junction acting as detector. The detector is mounted on a lens, positioned 1.2 cm away from the emitter on a similar lens. With the emitter radiating at 0.5 THz, we observed up to 7 Shapiro steps on the current-voltage characteristic of the detector. The ac current induced in this junction was 0.9 mA, and the dissipated power was 1.8 μW. The setup, although far from being optimized, may be considered as a first step towards an integrated high-Tc receiver.
We report on Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) intrinsic Josephson junction stacks with improved cooling, allowing for a remarkable increase in emission frequency compared to the previous designs. We started with a BSCCO stack embedded between two gold layers. When mounted in the standard way to a single substrate, the stack emits in the range of 0.43-0.82 THz. We then glued a second, thermally anchored substrate onto the sample surface. The maximum voltage of this better cooled and dimension-unchanged sample was increased and, accordingly, both the emission frequencies and the tunable frequency range were significantly increased up to 1.05 THz and to 0.71 THz, respectively. This double sided cooling may also be useful for other "hot" devices, e.g., quantum cascade lasers. V C 2014 AIP Publishing LLC. [http://dx.
The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.