Abstract.A primary goal of Earth system modelling is to improve understanding of the interactions and feedbacks between human decision making and biophysical processes. The nexus of land use and land cover change (LULCC) and the climate system is an important example. LULCC contributes to global and regional climate change, while climate affects the functioning of terrestrial ecosystems and LULCC. However, at present, LULCC is poorly represented in global circulation models (GCMs). LULCC models that are explicit about human behaviour and decision-making processes have been developed at local to regional scales, but the principles of these approaches have not yet been applied to the global scale level in ways that deal adequately with both direct and indirect feedbacks from the climate system. In this article, we explore current knowledge about LULCC modelling and the interactions between LULCC, GCMs and dynamic global vegetation models (DGVMs). In doing so, we propose new ways forward for improving LULCC representations in Earth system models. We conclude that LULCC models need to better conceptualise the alternatives for upscaling from the local to global scale. This involves better representation of human agency, including processes such as learning, adaptation and agent evolution, formalising the role and emergence of governance structures, institutional arrangements and policy as endogenous processes and better theorising about the role of teleconnections and connectivity across global networks. Our analysis underlines the importance of observational data in global-scale assessments and the need for coordination in synthesising and assimilating available data.
Published by Copernicus
Expertise in research integration and implementation is an essential but often overlooked component of tackling complex societal and environmental problems. We focus on expertise relevant to any complex problem, especially contributory expertise, divided into 'knowing-that' and 'knowing-how.' We also deal with interactional expertise and the fact that much expertise is tacit. We explore three questions. First, in examining 'when is expertise in research integration and implementation required?,' we review tasks essential (a) to developing more comprehensive understandings of complex problems, plus possible ways to address them, and (b) for supporting implementation of those understandings into government policy, community practice, business and social innovation, or other initiatives. Second, in considering 'where can expertise in research integration and implementation currently be found?,' we describe three realms: (a) specific approaches, including interdisciplinarity, transdisciplinarity, systems thinking and sustainability science; (b) case-based experience that is independent of these specific approaches; and (c) research examining elements of integration and implementation, specifically considering unknowns and fostering innovation. We highlight examples of expertise in each realm and demonstrate how fragmentation currently precludes clear identification of research integration and implementation expertise. Third, in exploring 'what is required to strengthen expertise in research integration and implementation?,' we propose building a knowledge bank. We delve into three key challenges: compiling existing expertise, indexing and organising the expertise to make it widely accessible, and understanding and overcoming the core reasons for the existing fragmentation. A growing knowledge bank of expertise in research integration and implementation on the one hand, and accumulating success in addressing complex societal and environmental problems on the other, will form a virtuous cycle so that each strengthens the other. Building a coalition of researchers and institutions will ensure this expertise and its application are valued and sustained.
Peepers are multichambered equilibrium dialyzers placed within sediments to collect porewater samples. We developed computer models to study the equilibration dynamics of a vial peeper design. One model simulated the concentration distributions and dynamic behavior of solute within the peeper cell itself, and another simulated the equilibration of peepers placed within sediments. The first model, together with laboratory experiments, demonstrated that convection arising within peeper cells placed in saline sediments would ensure rapid mixing of the contents of the cells. The predictions of equilibration behavior made by the second model for four chemical species (K, Na, Ca, and Sr) generally compared well with the results of laboratory experiments. These results showed that peeper equilibration was limited almost wholly by solute diffusion through the sediments and demonstrated the importance of peeper dimensions and solute diffusivities for equilibration times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.