Despite a number of efforts being put into the radiological protection of both patient and staff during interventional radiological (IR) procedures during recent years, information about radiation exposure during endoscopic retrograde cholangiopancreatography (ERCP) procedures remains scarce. The purpose of this study was to estimate both patient and staff radiation doses during therapeutic ERCP procedures by direct measurement and to compare these results with data from other IR procedures. For 54 patients, effective dose and skin dose were estimated by measuring the dose-area product. For staff, entrance surface doses to the lens of the eye, thyroid and hands were estimated by thermoluminescent dosemeters. A median effective dose of 7.3 mSv and a median entrance surface dose of 271 mGy per procedure were estimated for patients. The gastroenterologist received a median dose of 0.34 mGy to the lens of the eye, 0.30 mGy to the skin at the level of the thyroid and 0.44 mGy to the skin of the hands, per procedure. When comparing the dosimetric quantities presented in this study with data from other IR procedures, it is clear that patient skin doses and doses to staff are high owing to the use of inappropriate X-ray equipment. ERCP requires the same radiation protection practice as all IR procedures. It should be consistently included in future multicentre IR patient and staff dose survey studies at national or international level.
This large international radiation dose survey demonstrates considerable reduction of radiation exposure in coronary CTA during the last decade. However, the large inter-site variability in radiation exposure underlines the need for further site-specific training and adaptation of contemporary cardiac scan protocols.
The radiation dose of a standard micro-CT scan is relatively high and could influence the experimental outcome. We believe that the presented adaptation of the scan protocol allows for accurate imaging without the risk of interfering with the experimental outcome of the study.
Poppe et al. An Inside Perspective on Magma Intrusion KEYPOINTS -Cutting-edge dynamic wide beam X-ray Computed Tomography and Digital Volume Correlation allows an inside view on the temporal behavior of analog magma intrusion in granular host material in laboratory experiments. -Intrusion-induced 3D displacement and strain can be quantified over time. -Thick cryptodomes form with distributed strain and mixedmode fracturing in weak host materials. -Thin dikes form with localized strain and opening-mode fracturing in strong host materials. -A continuum of cone sheet geometries occurs in between these end-members. Frontiers in Earth Science | www.frontiersin.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.