Double emulsions are very promising for various applications in pharmaceutics, cosmetics, and food. Despite lots of published research, only a few products have successfully been marketed due to immense stability problems. This review describes approaches on how to characterize the stability of double emulsions. The measurement methods are used to investigate the influence of the ingredients or the process on the stability, as well as of the environmental conditions during storage. The described techniques are applied either to double emulsions themselves or to model systems. The presented analysis methods are based on microscopy, rheology, light scattering, marker detection, and differential scanning calorimetry. Many methods for the characterization of double emulsions focus only on the release of the inner water phase or of a marker encapsulated therein. Analysis methods for a specific application rarely give information on the actual mechanism, leading to double emulsion breakage. In contrast, model systems such as simple emulsions, microfluidic emulsions, or single-drop experiments allow for a systematic investigation of diffusion and coalescence between the individual phases. They also give information on the order of magnitude in which they contribute to the failure of the overall system. This review gives an overview of various methods for the characterization of double emulsion stability, describing the underlying assumptions and the information gained. With this review, we intend to assist in the development of stable double emulsion-based products.
Spray drying of whey protein-based emulsions is a common task in food engineering. Lipophilic, low molecular weight emulsifiers including lecithin, citrem, and mono- and diglycerides, are commonly added to the formulations, as they are expected to improve the processing and shelf life stability of the products. During the atomization step of spray drying, the emulsions are subjected to high stresses, which can lead to breakup and subsequent coalescence of the oil droplets. The extent of these phenomena is expected to be greatly influenced by the emulsifiers in the system. The focus of this study was therefore set on the changes in the oil droplet size of whey protein-based emulsions during atomization, as affected by the addition of low molecular weight emulsifiers. Atomization experiments were performed with emulsions stabilized either with whey protein isolate (WPI), or with combinations of WPI and lecithin, WPI and citrem, and WPI and mono- and diglycerides. The addition of lecithin promoted oil droplet breakup during atomization and improved droplet stabilization against coalescence. The addition of citrem and of mono- and diglycerides did not affect oil droplet breakup, but greatly promoted coalescence of the oil droplets. In order to elucidate the underlying mechanisms, measurements of interfacial tensions and coalescence times in single droplets experiments were performed and correlated to the atomization experiments. The results on oil droplet breakup were in good accordance with the observed differences in the interfacial tension measurements. The results on oil droplet coalescence correlated only to a limited extent with the results of coalescence times of single droplet experiments.
Double emulsions are a promising formulation for encapsulation and targeted release in pharmaceutics, cosmetics and food. An inner water phase is dispersed in an oil phase, which is again emulsified in a second water phase. The encapsulated inner water phase can be released via diffusion or via coalescence, neither of which is desired during storage but might be intended during application. The two interfaces in a double emulsion are stabilized by a hydrophilic and a lipophilic surfactant, to prevent the coalescence of the outer and the inner emulsion, respectively. This study focuses on the influence of the hydrophilic surfactant on the release of inner water or actives encapsulated therein via coalescence of the inner water droplet with the outer O–W2 interface. Since coalescence and diffusion are difficult to distinguish in double emulsions, single-droplet experiments were used to quantify differences in the stability of inner droplets. Different lipophilic (PGPH and PEG-30 dipolyhydroxylstearate) and hydrophilic surfactants (ethoxylates, SDS and polymeric) were used and resulted in huge differences in stability. A drastic decrease in stability was found for some combinations, while other combinations resulted in inner droplets that could withstand coalescence longer. The destabilization effect of some hydrophilic surfactants depended on their concentration, but was still present at very low concentrations. A huge spread of the coalescence time for multiple determinations was observed for all formulations and the necessary statistical analysis is discussed in this work. The measured stabilities of single droplets are in good accordance with the stability of double emulsions for similar surfactant combinations found in literature. Therefore, single droplet experiments are suggested for a fast evaluation of potentially suitable surfactant combinations for future studies on double-emulsion stability.
We report a Lego-inspired glass capillary microfluidic device capable of encapsulating both organic and aqueous phase change materials (PCMs) with high reproducibility and 100% PCM yield. Oil-in-oil-in-water (O/O/W) and water-in-oilin-water (W/O/W) core−shell double emulsion droplets were formed to encapsulate hexadecane (HD, an organic PCM) and salt hydrate SP21EK (an aqueous PCM) in a UV-curable polymeric shell, Norland Optical Adhesive (NOA). The double emulsions were consolidated through on-the-fly polymerization, which followed thiol-ene click chemistry for photoinitiation. The particle diameters and shell thicknesses of the microcapsules were controlled by manipulating the geometry of glass capillaries and fluid flow rates. The microcapsules were monodispersed and exhibited the highest encapsulation efficiencies of 65.4 and 44.3% for HD and SP21EK-based materials, respectively, as determined using differential scanning calorimetry (DSC). The thermogravimetric (TGA) analysis confirmed much higher thermal stability of both encapsulated PCMs compared to pure PCMs. Polarization microscopy revealed that microcapsules could sustain over 100 melting−crystallization cycles without any structural changes. Bifunctional microcapsules with remarkable photocatalytic activity along with thermal energy storage performance were produced after the addition of 1 wt % titanium dioxide (TiO 2 ) nanoparticles (NPs) into the polymeric shell. The presence of TiO 2 NPs in the shell was confirmed by higher opacity and whiteness of these microcapsules and was quantified by energy dispersive X-ray (EDX) spectroscopy. Young's modulus of HD-based microcapsules estimated using micromanipulation analysis increased from 58.5 to 224 MPa after TiO 2 incorporation in the shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.