Macrolide antibiotics are known to have a different proarrhythmic potential in the presence of comparable QT prolongation in the surface ECG. Because the extent of QT prolongation has been used as a surrogate marker for cardiotoxicity, we aimed to study the different electrophysiological effects of the macrolide antibiotics erythromycin, clarithromycin, and azithromycin in a previously developed experimental model of proarrhythmia. In 37 Langendorff-perfused rabbit hearts, erythromycin (150 -300 M, n ϭ 13) clarithromycin (150 -300 M, n ϭ 13), and azithromycin (150 -300 M, n ϭ 11) led to similar increases in QT interval and monophasic action potential (MAP) duration. In bradycardic (atrioventricular-blocked) hearts, eight simultaneously recorded epi-and endocardial MAPs demonstrated increased dispersion of repolarization in the presence of all three antibiotics. Erythromycin and clarithromycin led to early afterdepolarizations (EADs) and torsade de pointes (TdP) after lowering of potassium concentration. In the presence of azithromycin, no EAD or TdP occurred. Erythromycin and clarithromycin changed the MAP configuration to a triangular pattern, whereas azithromycin caused a rectangular pattern of MAP prolongation. In 13 additional hearts, 150 M azithromycin was administered after previous treatment with 300 M erythromycin and suppressed TdP provoked by erythromycin. In conclusion, macrolide antibiotics lead to similar prolongation of repolarization but show a different proarrhythmic potential (erythromycin Ͼ clarithromycin Ͼ azithromycin). In the presence of azithromycin, neither EAD nor TdP occur. This effect may be related to a rectangular pattern of action potential prolongation, whereas erythromycin and clarithromycin cause triangular action potential prolongation and induce TdP.
By inhibition of sodium channel inactivation, veratridine mimics LQT3 in this intact heart model. In bradycardic, hypokalemic hearts, it reproducibly induced EADs and TdP in the setting of significantly increased left ventricular transmural dispersion of repolarization. Based on these experimental data, reduction of transmural dispersion of repolarization may be considered an important target for the prevention of TdP in patients with LQT3.
TEVAR for type B aortic dissection results in a significant increase in TL and a decrease in FL volumes, not only acutely but also over time due to continued remodeling processes primarily in the thoracic aorta, with little impact on abdominal aortic volumes. Our data provide insight into the mechanism of a potential therapeutic benefit of TEVAR over medical therapy in type B dissection, which remains to be confirmed in a randomized clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.