Modern pentafluorosulfanyl (SF5) chemistry has an Achilles heel: synthetic accessibility. Herein, we present the first approach to aryl‐SF4Cl compounds (key intermediates in state‐of‐the‐art aryl‐SF5 synthesis) that overcomes the reliance on hazardous fluorinating reagents and/or gas reagents (e.g. Cl2) by employing easy‐to‐handle trichloroisocyanuric acid, potassium fluoride, and catalytic amounts of acid. These simple, mild conditions allow direct access to aryl‐SF4Cl intermediates that either have not been or cannot be demonstrated using previous methods. Furthermore, the same approach provides access to aryl‐SF3 and aryl‐SeF3 compounds, which extend the applications of this chemistry beyond arene SF5‐functionalization, and demonstrate its ability to address a more general oxidative fluorination problem.
The TeF5 group is significantly underexplored as a highly fluorinated substituent on an organic framework, despite it being a larger congener of the acclaimed SF5 group. In fact, only one aryl‐TeF5 compound (phenyl‐TeF5) has been reported to date, synthesized using XeF2. Our recently developed mild TCICA/KF approach to oxidative fluorination provides an affordable and scalable alternative to XeF2. Using this method, we report a scope of extensively characterized aryl‐TeF5 compounds, along with the first SC‐XRD data on this compound class. The methodology was also extended to the synthesis and structural study of heretofore unknown aryl‐TeF4CF3 compounds. Additionally, preliminary reactivity studies unveiled some inconsistencies with previous literature regarding phenyl‐TeF5. Although our studies conclude that the arene‐based TeF5 (and TeF4CF3) group is not quite as robust as the SF5 group, we find that the TeF5 group is more stable than previously thought, thus opening a door to explore new applications of this motif.
A series of S-hydrogen phosphorothioates have been converted to the corresponding S-trifluoromethyl derivatives upon reaction with the electrophilic trifluoromethylation reagent 1 (trifluoromethyl 1,3-dihydro-3,3-dimethyl-1,2-benziodoxole). Relative rate data were obtained by (19)F NMR monitoring of competition experiments and were evaluated by means of the Taft equation. A high positive polar sensitivity factor of 2.55 was found for electron-rich substrates and a negative one of -0.37 for electron-poor ones, implying the involvement of two different rate-determining steps. Furthermore, the reaction was found to be unaffected by steric factors.
The radical trifluoromethylation of thiophenol in condensed phase applying reagent 1 (3,3-dimethyl-1-(trifluoromethyl)-1λ(3),2-benziodoxol) has been examined by both theoretical and experimental methodologies. On the basis of ab initio molecular dynamics and metadynamics we show that radical reaction mechanisms favourably compete with polar ones involving the S-centred nucleophile thiophenol, their free energies of activation, ΔF(≠), lying between 9 and 15 kcal mol(-1). We further show that the origin of the proton activating the reagent is important. Hammett plot analysis reveals intramolecular protonation of 1, thus generating negative charge on the sulfur atom in the rate-determining step. The formation of a CF3 radical can be thermally induced by internal dissociative electron transfer, its activation energy, ΔF(≠), amounting to as little as 10.8 and 2.8 kcal mol(-1) for reagent 1 and its protonated form 2, respectively. The reduction of the iodine atom by thiophenol occurs either subsequently or in a concerted fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.