Biomolecular force fields have been traditionally derived based on a mixture of reference quantum chemistry data and experimental information obtained on small fragments. However, the possibility to run extensive molecular dynamics simulations on larger systems achieving ergodic sampling is paving the way to directly using such simulations along with solution experiments obtained on macromolecular systems. Recently, a number of methods have been introduced to automatize this approach. Here, we review these methods, highlight their relationship with machine learning methods, and discuss the open challenges in the field.
RNA function crucially depends on its structure. Thermodynamic models currently used for secondary structure prediction rely on computing the partition function of folding ensembles, and can thus estimate minimum free-energy structures and ensemble populations. These models sometimes fail in identifying native structures unless complemented by auxiliary experimental data. Here, we build a set of models that combine thermodynamic parameters, chemical probing data (DMS and SHAPE) and co-evolutionary data (direct coupling analysis) through a network that outputs perturbations to the ensemble free energy. Perturbations are trained to increase the ensemble populations of a representative set of known native RNA structures. In the chemical probing nodes of the network, a convolutional window combines neighboring reactivities, enlightening their structural information content and the contribution of local conformational ensembles. Regularization is used to limit overfitting and improve transferability. The most transferable model is selected through a cross-validation strategy that estimates the performance of models on systems on which they are not trained. With the selected model we obtain increased ensemble populations for native structures and more accurate predictions in an independent validation set. The flexibility of the approach allows the model to be easily retrained and adapted to incorporate arbitrary experimental information.
The relation between elasticity and yielding is investigated in a model polymer solid by Molecular-Dynamics simulations. By changing the bending stiffness of the chain and the bond length, semicrystalline and disordered glassy polymers — both with bond disorder — as well as nematic glassy polymers with bond ordering are obtained. It is found that in systems with bond disorder the ratio tau_Y/G between the shear yield strength tau_Y and the shear modulus G is close to the universal value of the atomic metallic glasses. The increase of the local nematic order in glasses leads to the increase of the\ud shear modulus and the decrease of the shear yield strength, as observed in experiments on nematic thermosets. A tentative explanation of the subsequent reduction of the ratio tau_Y/G in terms of the distributions of the per-monomer stress is offered
Motivation Cancers are composed by several heterogeneous subpopulations, each one harbouring different genetic and epigenetic somatic alterations that contribute to disease onset and therapy response. In recent years, copy number alterations leading to tumour aneuploidy have been identified as potential key drivers of such populations, but the definition of the precise makeup of cancer subclones from sequencing assays remains challenging. In the end, little is known about the mapping between complex copy number alterations and their effect on cancer phenotypes. Results We introduce CONGAS, a Bayesian probabilistic method to phase bulk DNA and single-cell RNA measurements from independent assays. CONGAS jointly identifies clusters of single cells with subclonal copy number alterations, and differences in RNA expression. The model builds statistical priors leveraging bulk DNA sequencing data, does not require a normal reference and scales fast thanks to a GPU backend and variational inference. We test CONGAS on both simulated and real data, and find that it can determine the tumour subclonal composition at the single-cell level together with clone-specific RNA phenotypes in tumour data generated from both 10x and Smart-Seq assays. Availability CONGAS is available as 2 packages: CONGAS (https://github.com/caravagnalab/congas), which implements the model in Python, and RCONGAS (https://caravagnalab.github.io/rcongas/), which provides R functions to process inputs, outputs, and run CONGAS fits. The analysis of real data and scripts to generate figures of this paper are available via RCONGAS; code associated to simulations is available at https://github.com/caravagnalab/rcongas_test. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.