In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation. Only in immune-edited tumors was immune predation linked to CD8 T cell infiltration. Immune-escaped metastases experienced the best response to immunotherapy, whereas immune-edited patients did not benefit, suggesting a preexisting resistance mechanism. Similarly, in a longitudinal cohort, nivolumab treatment removes neoantigens exclusively in the immunopeptidome of nonimmune-edited patients, the group with the best overall survival response. Our work uses dN/dS to differentiate between immune-edited and immune-escaped tumors, measuring potential antigenicity and ultimately helping predict response to treatment.
Cancer is a global health issue that places enormous demands on healthcare systems. Basic research, the development of targeted treatments, and the utility of DNA sequencing in clinical settings, have been significantly improved with the introduction of whole genome sequencing. However the broad applications of this technology come with complications. To date there has been very little standardisation in how data quality is assessed, leading to inconsistencies in analyses and disparate conclusions. Manual checking and complex consensus calling strategies often do not scale to large sample numbers, which leads to procedural bottlenecks. To address this issue, we present a quality control method that integrates point mutations, copy numbers, and other metrics into a single quantitative score. We demonstrate its power on 1,065 whole-genomes from a large-scale pan-cancer cohort, and on multi-region data of two colorectal cancer patients. We highlight how our approach significantly improves the generation of cancer mutation data, providing visualisations for cross-referencing with other analyses. Our approach is fully automated, designed to work downstream of any bioinformatic pipeline, and can automatise tool parameterization paving the way for fast computational assessment of data quality in the era of whole genome sequencing.
Motivation Cancers are composed by several heterogeneous subpopulations, each one harbouring different genetic and epigenetic somatic alterations that contribute to disease onset and therapy response. In recent years, copy number alterations leading to tumour aneuploidy have been identified as potential key drivers of such populations, but the definition of the precise makeup of cancer subclones from sequencing assays remains challenging. In the end, little is known about the mapping between complex copy number alterations and their effect on cancer phenotypes. Results We introduce CONGAS, a Bayesian probabilistic method to phase bulk DNA and single-cell RNA measurements from independent assays. CONGAS jointly identifies clusters of single cells with subclonal copy number alterations, and differences in RNA expression. The model builds statistical priors leveraging bulk DNA sequencing data, does not require a normal reference and scales fast thanks to a GPU backend and variational inference. We test CONGAS on both simulated and real data, and find that it can determine the tumour subclonal composition at the single-cell level together with clone-specific RNA phenotypes in tumour data generated from both 10x and Smart-Seq assays. Availability CONGAS is available as 2 packages: CONGAS (https://github.com/caravagnalab/congas), which implements the model in Python, and RCONGAS (https://caravagnalab.github.io/rcongas/), which provides R functions to process inputs, outputs, and run CONGAS fits. The analysis of real data and scripts to generate figures of this paper are available via RCONGAS; code associated to simulations is available at https://github.com/caravagnalab/rcongas_test. Supplementary information Supplementary data are available at Bioinformatics online.
Stage I epithelial ovarian cancer (EOC) represents about 10% of all EOCs. It is characterized by a complex histopathological and molecular heterogeneity, and it is composed of five main histological subtypes (mucinous, endometrioid, clear cell and high, and low grade serous), which have peculiar genetic, molecular, and clinical characteristics. As it occurs less frequently than advanced-stage EOC, its molecular features have not been thoroughly investigated. In this study, using in silico approaches and gene expression data, on a multicentric cohort composed of 208 snap-frozen tumor biopsies, we explored the subtype-specific molecular alterations that regulate tumor aggressiveness in stage I EOC. We found that single genes rather than pathways are responsible for histotype specificities and that a cAMP-PKA-CREB1 signaling axis seems to play a central role in histotype differentiation. Moreover, our results indicate that immune response seems to be, at least in part, involved in histotype differences, as a higher immune-reactive behavior of serous and mucinous samples was observed with respect to other histotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.