Selective Laser Melting (SLM) is actually the most attractive technique in an Additive Manufacturing (AM) technology because of the possibility to build layer by layer up nearly full density metallic components without needing for post-processing. One of the main problems in SLM processes is represented by the thermal distortion of the model during forming; the part tends to be deformed and cracked due to the thermal stress. Therefore, it is important to know the effect of the process parameters on the molten zone and consequently on the density of the consolidated material. Great advantage can be obtained from the prediction of temperature evolution and distribution.The aim of this study is to evaluate the influence of the process parameters on the temperature evolution in a 3D model. The developed code evaluates the distribution and evolution of the temperatures in the SLM process and simulates the powder-liquid-solid change by means of a check of the nodes temperature.
The paper investigates the fabrication of Selective Laser Melting (SLM) titanium alloy Ti6Al4V micro-lattice structures for the production of lightweight components. Specifically, the pillar textile unit cell is used as base lattice structure and alternative lattice topologies including reinforcing vertical bars are also considered. Detailed characterizations of dimensional accuracy, surface roughness, and micro-hardness are performed. In addition, compression tests are carried out in order to evaluate the mechanical strength and the energy absorbed per unit mass of the lattice truss specimens made by SLM. The built structures have a relative density ranging between 0.2234 and 0.5822. An optimization procedure is implemented via the method of Taguchi to identify the optimal geometric configuration which maximizes peak strength and energy absorbed per unit mass.
Selective Laser Sintering (SLS), has become one of the most popular technique in the layer manufacturing processes because of the ability to build complex geometries models with a wide range of materials. Recently, the interest in SLS is mainly focused into metals because of the possibility of producing models not only for the prototyping step but also as functional parts. Driven by the need to process nearly full dense objects, with mechanical properties comparable to those of bulk materials and by the desire to avoid long post processing cycles, Selective Laser Melting (SLM) has been developed. SLM represents an evolution of the SLS process: in the first one the complete melting of powder occurs rather than sintering or partial melting of the second one. SLM, is mainly suitable to produce tools and inserts with internal undercuts and channels for conformal cooling for injection molding.
A careful control of the parameters which influence the melting and the amount of energy density involved in the process is necessary to get parts with optimized quality. The aim of this paper was to study the effect of the main process parameters (laser power, scan speed, scan spacing, hatch spacing, scanning strategy) and of thermal treatments on the quality of built parts in terms of hardness, density, microstructure, and mechanical properties. The 18 Ni Marage 300 steel, one of the most used materials in the die industry was investigated, using a Nd:YAG laser with a maximum power of 100W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.