After transport in the blood and implantation in the microcirculation, metastatic tumor cells must invade the vascular endothelium and underlying basal lamina. Mouse B16 melanoma sublines were used to determine the relation between metastatic properties and the ability of the sublines to degrade enzymatically the sulfated glycosaminoglycans present in the extracellular matrix of cultured vascular endothelial cells. Highly invasive and metastatic B16 sublines degraded matrix glycosaminoglycans faster than did sublines of lower metastatic potential. The main products of this matrix degradation were heparan sulfate fragments. Intact B16 cells (or their cell-free homogenates) with a high potential for lung colonization degraded purified heparan sulfate from bovine lung at higher rates than did B16 cells with a poor potential for lung colonization. Analysis of the degradation fragments indicated that B16 cells have a heparan sulfate endoglycosidase. Thus the abilities of B16 melanoma cells to extravasate and successfully colonize the lung may be related to their capacities to degrade heparan sulfate in the walls of pulmonary blood vessels.
The effects of the administration of normal human plasma to patients affected by mucopolysaccharidoses I and II (Hurler's and Hunter's syndromes) have been evaluated. The infusion was followed by a decreased urinary excretion of relatively large molecular weight glycosaminoglycans and by an increased excretion of their products of degradation. Among the latter, products of the degradation of dermatan sulfate and heparan sulfate could be demonstrated. The results indicate that normal human plasma may contain those "factors" that are involved in the normal degradation of dermatan sulfate and heparan sulfate, that are missing in the diseased states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.