The
renin-angiotensin system (RAS) is a critical
regulator of hypertension, primarily through the
actions of the vasoactive peptide Ang II, which
is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in
blood pressure. The discovery of ACE2, which
primarily metabolises Ang II into the
vasodilatory Ang-(1-7), has added a new
dimension to the traditional RAS. As a result
there has been huge interest in ACE2 over the
past decade as a potential therapeutic for
lowering blood pressure, especially elevation
resulting from excess Ang II. Studies focusing
on ACE2 have helped to reveal other actions of
Ang-(1-7), outside vasodilation, such as
antifibrotic and antiproliferative effects.
Moreover, investigations focusing on ACE2 have
revealed a variety of roles not just catalytic
but also as a viral receptor and amino acid
transporter. This paper focuses on what is
known about ACE2 and its biological roles,
paying particular attention to the regulation of
ACE2 expression. In light of the entrance of
human recombinant ACE2 into clinical trials, we
discuss the potential use of ACE2 as a
therapeutic and highlight some pertinent
questions that still remain unanswered about
ACE2.
ACE2 (angiotensin-converting enzyme 2) counterbalances the actions of ACE (angiotensin-converting enzyme) by metabolizing its catalytic product, the vasoactive and fibrogenic peptide AngII (angiotensin II), into Ang-(1-7) [angiotensin-(1-7)]. Enhanced ACE2 expression may be protective in diabetes, cardiovascular disease and cancer. However, relatively little is known about the specific physiological factors regulating ACE2 expression. In the present paper, we show, by Western blotting and qPCR (quantitative real-time PCR), that ACE2 expression is increased under conditions of cell stress, including hypoxic conditions, IL (interleukin)-1β treatment and treatment with the AMP mimic AICAR (5-amino-4-imidazolecarboxamide riboside). The NAD+-dependent deacetylase SIRT1 (silent information regulator T1) was found to be up-regulated after AICAR treatment but, conversely, was down-regulated after IL-1β treatment. ChIP analysis demonstrated that SIRT1 bound to the ACE2 promoter and that binding was increased after AICAR treatment, but decreased after IL-1β treatment. Inhibition of SIRT1 activity ablated the AICAR-induced increase in ACE2. In conclusion, we have established that the expression of the ACE2 transcript is controlled by the activity of SIRT1 under conditions of energy stress.
Angiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin-angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-a converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors.
The angiotensin converting enzymes (ACEs) are the key catalytic components of the renin-angiotensin system, mediating precise regulation of blood pressure by counterbalancing the effects of each other. Inhibition of ACE has been shown to improve pathology in cardiovascular disease, whilst ACE2 is cardioprotective in the failing heart. However, the mechanisms by which ACE2 mediates its cardioprotective functions have yet to be fully elucidated. Here we demonstrate that both ACE and ACE2 bind integrin subunits, in an RGD-independent manner, and that they can act as cell adhesion substrates. We show that cellular expression of ACE2 enhanced cell adhesion. Furthermore, we present evidence that soluble ACE2 (sACE2) is capable of suppressing integrin signalling mediated by FAK. In addition, sACE2 increases the expression of Akt, thereby lowering the proportion of the signalling molecule phosphorylated Akt. These results suggest that ACE2 plays a role in cell-cell interactions, possibly acting to fine-tune integrin signalling. Hence the expression and cleavage of ACE2 at the plasma membrane may influence cell-extracellular matrix interactions and the signalling that mediates cell survival and proliferation. As such, ectodomain shedding of ACE2 may play a role in the process of pathological cardiac remodelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.