Myeloid differentiation factor 88 (MyD88) plays a crucial role in the signaling pathways triggered by interleukin (IL)-1 and Toll-like receptors in several steps of innate host defense. A crucial event in this signaling pathway is represented by dimerization of MyD88, which allows the recruitment of downstream kinases like IRAK-1 and IRAK-4. Herein, we have investigated the function of the Toll/IL-1 receptor (TIR) domain in MyD88 homodimerization in cell-free and in vitro experimental settings by using epta-peptides that mimic the BB-loop region of the conserved TIR domain of different proteins. By using a pull-down assay with purified glutathione S-transferase-MyD88 TIR or co-immunoprecipitation experiments, we found that epta-peptides derived from the TIR domain of MyD88 and IL-18R are the most effective in inhibiting homodimerization with either the isolated TIR or full-length MyD88. Moreover, we demonstrated that a cell permeable analog of MyD88 epta-peptide inhibits homodimerization of MyD88 TIR domains in an in vitro cell system and significantly reduces IL-1 signaling, as assayed by activation of the downstream transcription factor NF-B. Our results indicate that the BB-loop in TIR domain of MyD88 is a good target for specific inhibition of MyD88-mediated signaling in vivo.Myeloid differentiation factor 88 (MyD88) 1 is a crucial adaptor protein that functions to recruit signaling proteins to receptors of the Toll-like or interleukin-1 receptor (TLR/IL-1R) superfamily (1, 2). Activation of signaling pathways downstream of this class of receptors is fundamental for several aspects of host defense.The MyD88 protein has a modular structure composed of a death domain (DD) at the N terminus and a Toll/IL-1 receptor (TIR) domain at the C terminus separated by a short linker region, referred to as intermediary domain (3). Upon ligand stimulation, MyD88 is recruited to the membrane by interaction of its TIR domain with the analogous domain in the IL-1R or TLR receptors (4). It has been shown that MyD88 forms homodimers (5) and promotes the recruitment to the plasma membrane and the activation of two IL-1 receptor-associated kinases: IRAK-4 and IRAK-1. A homophilic interaction between MyD88 DD and the homologous DD found at the N terminus of the kinases is required for such event (6). A recent model proposes that MyD88 binds to IRAK-4 and promotes phoshorylation of critical IRAK-1 residues by IRAK-4 (7). These events stimulate IRAK-1 autophosphorylation and its interaction with TRAF6 (tumor necrosis factor (TNF) receptorassociated factor 6), leading to activation of both the inhibitory B kinase (IKK) and the mitogen-activated protein kinases (MAPK) JNK and p38. These kinases are pivotal in the ultimate activation of several transcription factors, including NF-B and activator protein 1 (AP-1), which elicit the production of essential effector molecules for immune and inflammatory responses (8). The generation of MyD88-deficient mice (9) has shown that this protein is required for the proliferative response of T-cell...
MyD88 is an adaptor protein, which plays an essential role in the intracellular signaling elicited by IL-1R and several TLRs. Central to its function is the ability of its Toll/IL-1R translation initiation region (TIR) domain to heterodimerize with the receptor and to homodimerize with another MyD88 molecule to favor the recruitment of downstream signaling molecules such as the serine/threonine kinases IL-1R-associated kinase 1 (IRAK1) and IRAK4. Herein, we have synthesized and tested the activity of a synthetic peptido-mimetic compound (ST2825) modeled after the structure of a heptapeptide in the BB-loop of the MyD88-TIR domain, which interferes with MyD88 signaling. ST2825 inhibited MyD88 dimerization in coimmunoprecipitation experiments. This effect was specific for homodimerization of the TIR domains and did not affect homodimerization of the death domains. Moreover, ST2825 interfered with recruitment of IRAK1 and IRAK4 by MyD88, causing inhibition of IL-1beta-mediated activation of NF-kappaB transcriptional activity. After oral administration, ST2825 dose-dependently inhibited IL-1beta-induced production of IL-6 in treated mice. Finally, we observed that ST2825 suppressed B cell proliferation and differentiation into plasma cells in response to CpG-induced activation of TLR9, a receptor that requires MyD88 for intracellular signaling. Our results indicate that ST2825 blocks IL-1R/TLR signaling by interfering with MyD88 homodimerization and suggest that it may have therapeutic potential in treatment of chronic inflammatory diseases.
MyD88 couples the activation of the Toll-like receptors and interleukin-1 receptor superfamily with intracellular signaling pathways. Upon ligand binding, activated receptors recruit MyD88 via its Toll-interleukin-1 receptor domain. MyD88 then allows the recruitment of the interleukin-1 receptor-associated kinases (IRAKs). We performed a site-directed mutagenesis of MyD88 residues, conserved in death domains of the homologous FADD and Pelle proteins, and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of residues 52 (MyD88 E52A ) and 58 (MyD88 Y58A ) impaired recruitment of both IRAK1 and IRAK4, whereas mutation of residue 95 (MyD88 K95A ) only affected IRAK4 recruitment. Since all MyD88 mutants were defective in signaling, recruitment of both IRAKs appeared necessary for activation of the pathway. Moreover, overexpression of a green fluorescent protein (GFP)-tagged mini-MyD88 protein (GFP-MyD88-(27-72)), comprising the Glu 52 and Tyr 58 residues, interfered with recruitment of both IRAK1 and IRAK4 by MyD88 and suppressed NF-B activation by the interleukin-1 receptor but not by the MyD88-independent TLR3. GFP-MyD88-(27-72) exerted its effect by titrating IRAK1 and suppressing IRAK1-dependent NF-B activation. These experiments identify novel residues of MyD88 that are crucially involved in the recruitment of IRAK1 and IRAK4 and in downstream propagation of MyD88 signaling.MyD88 was first discovered during studies addressing the differentiation of mouse myeloid cells in response to growthinhibitory stimuli (1). Subsequent investigations revealed that MyD88 possesses a modular organization (2), with an aminoterminal death domain (DD), 3 found in proteins involved in cell death (3, 4), and a carboxyl-terminal Toll-interleukin-1 receptor (TIR) domain, present in the intracytoplasmic tail of receptors belonging to the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily (5). MyD88 also has an intermediate domain (ID) that is crucial in TLR signaling due to its interaction with IRAK4 (6). The role of MyD88 as a signal transducer was first shown in the pathways triggered by the activation of IL-1R (7, 8) and TLR4 (9). Further studies showed that all TLRs, with the sole exception of TLR3, and the IL-1R family utilize the adaptor protein MyD88 to initiate their signaling pathway (10).By virtue of its modular organization, MyD88 critically bridges activated receptor complexes to downstream adaptors/ effectors. Upon activation, MyD88 is recruited through its TIR domain by the homologous domain of the activated TLR/IL-1R (11, 12). MyD88, in turn, has been shown to interact with a family of downstream kinases, namely IRAK1 (13), IRAK2 (7), IRAK-M (15), and IRAK4 (16), through the interaction of its DD with the respective DDs present in the amino-terminal region of IRAKs (17). At this stage, this multimeric complex is competent to elicit the propagation of the signal downstream of the receptor(s). Although MyD88 recruits IRAK-1 via DD-DD interactions, its recruitment o...
Autoreactive B cells persist in SLE patients during disease remission in the circulating B-cell memory pool. TLR9-dependent activation of memory B cells by pathogens could be one of the mechanisms triggering relapses in SLE. Compounds targeting the TLR/MyD88 pathway may be used as novel therapeutic tools to treat acute disease and to prevent relapses in SLE patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.