Objectives We hypothesized that published performances of algorithms for artificial intelligence (AI) pneumothorax (PTX) detection in chest radiographs (CXRs) do not sufficiently consider the influence of PTX size and confounding effects caused by thoracic tubes (TTs). Therefore, we established a radiologically annotated benchmarking cohort (n = 6446) allowing for a detailed subgroup analysis. Materials and Methods We retrospectively identified 6434 supine CXRs, among them 1652 PTX-positive cases and 4782 PTX-negative cases. Supine CXRs were radiologically annotated for PTX size, PTX location, and inserted TTs. The diagnostic performances of 2 AI algorithms (“AI_CheXNet” [Rajpurkar et al], “AI_1.5” [Guendel et al]), both trained on publicly available datasets with labels obtained from automatic report interpretation, were quantified. The algorithms' discriminative power for PTX detection was quantified by the area under the receiver operating characteristics (AUROC), and significance analysis was based on the corresponding 95% confidence interval. A detailed subgroup analysis was performed to quantify the influence of PTX size and the confounding effects caused by inserted TTs. Results Algorithm performance was quantified as follows: overall performance with AUROCs of 0.704 (AI_1.5) / 0.765 (AI_CheXNet) for unilateral PTXs, AUROCs of 0.666 (AI_1.5) / 0.722 (AI_CheXNet) for unilateral PTXs smaller than 1 cm, and AUROCs of 0.735 (AI_1.5) / 0.818 (AI_CheXNet) for unilateral PTXs larger than 2 cm. Subgroup analysis identified TTs to be strong confounders that significantly influence algorithm performance: Discriminative power is completely eliminated by analyzing PTX-positive cases without TTs referenced to control PTX-negative cases with inserted TTs. Contrarily, AUROCs increased up to 0.875 (AI_CheXNet) for large PTX-positive cases with inserted TTs referenced to control cases without TTs. Conclusions Our detailed subgroup analysis demonstrated that the performance of established AI algorithms for PTX detection trained on public datasets strongly depends on PTX size and is significantly biased by confounding image features, such as inserted TTS. Our established, clinically relevant and radiologically annotated benchmarking cohort might be of great benefit for ongoing algorithm development.
ObjectivesChest radiographs (CXRs) are commonly performed in emergency units (EUs), but the interpretation requires radiology experience. We developed an artificial intelligence (AI) system (precommercial) that aims to mimic board-certified radiologists' (BCRs') performance and can therefore support non–radiology residents (NRRs) in clinical settings lacking 24/7 radiology coverage. We validated by quantifying the clinical value of our AI system for radiology residents (RRs) and EU-experienced NRRs in a clinically representative EU setting.Materials and MethodsA total of 563 EU CXRs were retrospectively assessed by 3 BCRs, 3 RRs, and 3 EU-experienced NRRs. Suspected pathologies (pleural effusion, pneumothorax, consolidations suspicious for pneumonia, lung lesions) were reported on a 5-step confidence scale (sum of 20,268 reported pathology suspicions [563 images × 9 readers × 4 pathologies]) separately by every involved reader. Board-certified radiologists' confidence scores were converted into 4 binary reference standards (RFSs) of different sensitivities. The RRs' and NRRs' performances were statistically compared with our AI system (trained on nonpublic data from different clinical sites) based on receiver operating characteristics (ROCs) and operating point metrics approximated to the maximum sum of sensitivity and specificity (Youden statistics).ResultsThe NRRs lose diagnostic accuracy to RRs with increasingly sensitive BCRs' RFSs for all considered pathologies. Based on our external validation data set, the AI system/NRRs' consensus mimicked the most sensitive BCRs' RFSs with areas under ROC of 0.940/0.837 (pneumothorax), 0.953/0.823 (pleural effusion), and 0.883/0.747 (lung lesions), which were comparable to experienced RRs and significantly overcomes EU-experienced NRRs' diagnostic performance. For consolidation detection, the AI system performed on the NRRs' consensus level (and overcomes each individual NRR) with an area under ROC of 0.847 referenced to the BCRs' most sensitive RFS.ConclusionsOur AI system matched RRs' performance, meanwhile significantly outperformed NRRs' diagnostic accuracy for most of considered CXR pathologies (pneumothorax, pleural effusion, and lung lesions) and therefore might serve as clinical decision support for NRRs.
Fusion imaging depicts an innovative technique that facilitates combining assets and reducing restrictions of advanced ultrasound and cross-sectional imaging. The purpose of the present retrospective study was to evaluate the role of fusion imaging for assessing hepatic and renal lesions. Between 02/2011–08/2020, 92 patients in total were included in the study, of which 32 patients had hepatic lesions, 60 patients had renal lesions. Fusion imaging was technically successful in all patients. No adverse side effects upon intravenous (i.v.) application of SonoVue® (Bracco, Milan, Italy) were registered. Fusion imaging could clarify all 11 (100%) initially as indeterminate described hepatic lesions by computed tomography/magnetic resonance imaging (CT/MRI). Moreover, 5/14 (36%) initially suspicious hepatic lesions could be validated by fusion imaging, whereas in 8/14 (57%), malignant morphology was disproved. Moreover, fusion imaging allowed for the clarification of 29/30 (97%) renal lesions initially characterized as suspicious by CT/MRI, of which 19/30 (63%) underwent renal surgery, histopathology revealed malignancy in 16/19 (84%), and benignity in 3/19 (16%). Indeterminate findings could be elucidated by fusion imaging in 20/20 (100%) renal lesions. Its accessibility and repeatability, even during pregnancy and in childhood, its cost-effectiveness, and its excellent safety profile, make fusion imaging a promising instrument for the thorough evaluation of hepatic and renal lesions in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.