Urbanisation is one of the most significant threats to biodiversity, due to the rapid and large‐scale environmental alterations it imposes on the natural landscape. It is, therefore, imperative that we understand the consequences of and mechanisms by which, species can respond to it. In recent years, research has shown that plasticity of the gut microbiome may be an important mechanism by which animals can adapt to environmental change, yet empirical evidence of this in wild non‐model species remains sparse. Using an empirical replicated study system, we show that city life alters the gut microbiome and stable isotope profiling of a wild native non‐model species – the eastern water dragon (Intellagama lesueurii) in Queensland, Australia. City dragons exhibit a more diverse gut microbiome than their native habitat counterparts and show gut microbial signatures of a high fat and plant rich diet. Additionally, we also show that city dragons have elevated levels of the Nitrogen‐15 isotope in their blood suggesting that a city diet, which incorporates novel anthropogenic food sources, may also be richer in protein. These results highlight the role that gut microbial plasticity plays in an animals' response to human‐altered landscapes.
Numerous studies have observed kin-biased social associations in a variety of species. Many of these studies have focused on species exhibiting parental care, which may facilitate the transmission of the social environment from parents to offspring. This becomes problematic when disentangling whether kin-biased associations are driven by kin recognition, or are a product of transmission of the social environment during ontogeny, or a combination of both. Studying kin-biased associations in systems that lack parental care may aid in addressing this issue. Furthermore, when studying kin-biased social associations, it is important to differentiate whether these originate from preferential choice or occur randomly as a result of habitat use or limited dispersal. Here, we combined high-resolution single-nucleotide polymorphism data with a long-term behavioral data set of a reptile with no parental care to demonstrate that eastern water dragons (Intellagama lesueurii) bias their nonrandom social associations toward their kin. In particular, we found that although the overall social network was not linked to genetic relatedness, individuals associated with kin more than expected given availability in space and also biased social preferences toward kin. This result opens important opportunities for the study of kinship-driven associations without the confounding effect of vertical transmission of social environments. Furthermore, we present a robust multiple-step approach for determining whether kin-biased social associations are a result of active social decisions or random encounters resulting from habitat use and dispersal patterns.
Urban environments present some of the greatest challenges to species survival. This is particularly true for species that exhibit thermally sensitive traits, such as temperature-dependent sex determination (TSD). This is because urban environments not only present species with entirely novel ecosystems, but species will also experience increased temperatures. These temperature increases may result not only in offspring mortality, but also skewed population sex ratios. To persist in cities, urban dwellers with TSD will therefore need to adjust the temperature of the nesting environment, either through phenotypic plasticity or rapid evolution through natural selection. Here, we investigate the nesting ecology of a long-lived, urban dwelling reptile, the eastern water dragon (Intellagama lesueurii), to understand how a TSD species may respond to urban environments. Based on data collected from 72 nests over 2 nesting seasons, we show that city dragons not only dug significantly deeper nests than previously observed across their natural riparian habitat, but also nested in novel substrates. Furthermore, we observed a behaviour not previously described in this species, where mothers travel outside of their core home range to nest. This excursion behaviour potentially represents a greater maternal investment and is linked to the selection of specific microhabitats.
Nannizziopsis barbatae is an emerging fungal pathogen capable of causing contagious dermatomycosis in reptiles. Here, we report a 31.54-Mb draft genome sequence of an isolate originating from an infected eastern water dragon in Brisbane, Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.