Atmospheric pollution from vehicular traffic is a matter of growing interest, often leading to temporary restrictions in urban areas. Although guidelines indicate limits for several parameters, the real toxicologic impacts remain largely unexplored in field conditions. In this study our aim was to validate an ecotoxicologic approach to evaluate both bioaccumulation and toxicologic effects caused by airborne pollutants. Specimens of the land snail Helix aspersa were caged in five sites in the urban area of Ancona, Italy. After 4 weeks, trace metals (cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc) and polycyclic aromatic hydrocarbons (PAHs) were measured and these data integrated with the analyses of molecular and biochemical responses. Such biomarkers reflected the induction of detoxification pathways or the onset of cellular toxicity caused by pollutants. Biomarkers that correlated with contaminant accumulation included levels of metallothioneins, activity of biotransformation enzymes (ethoxyresorufin O-deethylase, ethoxycoumarin O-deethylase), and peroxisomal proliferation. More general responses were investigated as oxidative stress variations, including efficiency of antioxidant defenses (catalase, glutathione reductase, glutathione S-transferases, glutathione peroxidases, and total glutathione) and total oxyradical scavenging capacity toward peroxyl and hydroxyl radicals, onset of cellular damages (i.e., lysosomal destabilization), and loss of DNA integrity. Results revealed a marked accumulation of metals and PAHs in digestive tissues of organisms maintained in more traffic-congested sites. The contemporary appearance of several alterations confirmed the cellular reactivity of these chemicals with toxicologic effects of potential concern for human health. The overall results of this exploratory study suggest the utility of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas.
Unrepaired DNA double-strand breaks (DSBs) may have serious consequences for cells by inducing chromosomal aberrations, thereby increasing genetic instability and cancer risk. One's capacity to repair DSB is therefore an important factor to consider when estimating cancer risk. We assessed DNA end-joining (EJ) capacity in cell lines derived from sisters discordant for breast cancer to determine if individual differences in DSB repair are a significant risk factor. We used an in vitro phenotypic assay on nuclear extracts from lymphoblasts of 179 subjects including 86 cases and 93 controls. EJ activity was functionally estimated as the ability of extracts to join together monomers of the plasmid pUC18 linearized either with sticky (EcoRI) or blunt ends (Hin-cII). Mean percentage of EJ capacity was slightly lower in cases than controls, both for EcoRI (cases 27.9 ± 11.1; controls 29.6 ± 10.7, P 5 0.28) and HincII substrates (cases 28.8 ± 12.2; controls 30.6 ± 13.0, P 5 0.36); however, no significant differences were observed. Categorizing EJ capacity into tertiles and using the highest activity as the referent, we observed elevated associations for each tertile of decreased repair [Odds ratio (OR) 5 2.20, 95% confidence interval (CI) 5 0.77-6.22 and OR 5 4.22, 95% CI thinsp;5 1.22-14.0, P 5 0.02], respectively, for EcoRI. Results were not statistically significant for HincII (OR 5 1.37, 95% CI 5 0.51-3.70 and OR 5 2.32, 95% CI 5 0.57-9.38, P 5 0.24). These data suggest that individual differences in EJ capacity may represent a risk factor predisposing women to breast cancer.
Genotoxicity studies using the single cell gel electrophoresis (SCGE) assay indicate that basal levels of DNA strand breaks (SBs) in marine invertebrates are higher and more variable than those in marine vertebrates. This elevated level of DNA damage was attributed to a large number of alkali-labile sites, which are characteristic of the tightly-packaged DNA in invertebrate cells. To investigate if altering the SCGE protocol can artificially modulate high levels of SBs, SCGE experiments were performed on haemocytes from the Mediterranean mussel (Mytilus galloprovincialis) using proteinase K (PK) digestion in combination with assay buffers containing various concentrations of EDTA. In addition, the effects of Trolox (soluble antioxidant) and aurintricarboxylic acid (ATA; inhibitor of Ca(2+)/Mg(2+)-dependent nucleases) also were tested. The levels of SBs in M. galloprovincialis cells were compared with SBs in cells from a terrestrial mollusk (the snail Helix aspersa), and a teleost fish (the seabass Dicentrarchus labrax). The integrity of M. galloprovincialis DNA isolated with phenol extractions using EDTA, Trolox, and ATA was further assayed by gel electrophoresis. High SBs in mussel cells were reduced by combining EDTA with PK digestion, or using Trolox or ATA during cell processing for the SCGE assay. Snails and seabass had lower levels of SBs in the SCGE assay, and the levels were not affected by the protocol modifications. Adding EDTA, Trolox, or ATA to phenol extractions of M. galloprovincialis genomic DNA also reduced the extent of DNA fragmentation. These results suggest that the internal fluids of M. galloprovincialis may increase the basal levels of DNA SBs through oxidative and/or enzyme-mediated pathways. M. galloprovincialis is used extensively as a sentinel species for assessing the genotoxic hazard of marine pollutants. Our data suggest that the SCGE protocol should be carefully considered when assessing DNA damage in these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.