Visual cognition of observers with autism spectrum disorder (ASD) seems to show an unbalance between the complementary functions of integration and segregation. This study uses visual search and crowding paradigms to probe the relative ability of children with autism, compared to normal developments children, to extract individual targets from cluttered backgrounds both within and outside the crowding regime. The data show that standard search follows the same pattern in the ASD and control groups with a strong effect of the set size that is substantially weakened by cueing the target location with a synchronous spatial cue. On the other hand, the crowding effect of eight flankers surrounding a small peripheral target is virtually absent in the clinical sample, indicating a superior ability to segregate cluttered visual items. This data, along with evidence of an impairment to the neural system for binding contours in ASD, bring additional support to the general idea of a shift of the trade-off between integration and segregation toward the latter. More specifically, they show that when discriminability is balanced across conditions, an advantage in odd-man out tasks is evident in ASD observers only within the crowding regime, when binding mechanism might get compulsorily triggered in normal observers.
Perceptual decisions are often made in cluttered environments, where a target may be confounded with competing “distractor” stimuli. Although many studies and theoretical treatments have highlighted the effect of distractors on performance, it remains unclear how they affect thequality of perceptual decisions. Here we show that perceptual clutter leads not only to an increase in judgment errors, but also to an increase in perceived signal strength and decision confidence on erroneous trials. Observers reported simultaneously the direction and magnitude of the tilt of a target grating presented either alone, or together with vertical distractor stimuli. When presented in isolation, observers perceived isolated targets as only slightly tilted on error trials, and had little confidence in their decision. When the target was embedded in distractors, however, they perceived it to be strongly tilted on error trials, and had high confidence of their (erroneous) decisions. The results are well explained by assuming that the observers' internal representation of stimulus orientation arises from a nonlinear combination of the outputs of independent noise-perturbed front-end detectors. The implication that erroneous perceptual decisions in cluttered environments are made with high confidence has many potential practical consequences, and may be extendable to decision-making in general.
Pusher behaviour (PB) reflects some misrepresentation of verticality. However, its neural mechanisms are still unclear. The aim of this pilot study is to assess the perception of the subjective visual vertical in patients with PB using an orientation discrimination task relying on a psychophysical forced-choice procedure. A sample of eight patients with post-stroke hemiplegia, three of whom with (PB+ group) and five without (PB- group) a clear PB, and 10 matched healthy subjects, was selected. All participants were assessed with an orientation discrimination task based on the objective Two-Alternatives Forced Choice (2AFC) procedure, in which observers are forced to report whether an oriented stimulus that was tilted off-vertical by a varying amount (but never vertical) was tilted clockwise or counterclockwise from vertical. Participants' ability in detecting the visual vertical was estimated by calculation of bias and threshold, which represent deviations of the subjective vertical from the physical vertical and the sensitivity to orientation offsets away from vertical, respectively. While there were no significant differences between groups in terms of bias, statistical analysis showed a significantly higher threshold in the PB+ group compared to both PB- and control groups. Results suggest that vertical misrepresentation might be due to the presence, in patients with PB, of a lower signal-to-noise ratio in coding systems. Implications for clinical practice are discussed.
Visual attention is captured by transient signals in the periphery of the visual field, allowing enhanced perceptual representations in spatial tasks. However, it has been reported that the same cues impair performance in temporal tasks (e.g., Yeshurun, 2004; Yeshurun & Levy, 2003). This findings suggest that transient attention enhances the activity of slow, high-resolution channels, like parvocellular neurons, and/or shuts off faster channels better sensitive to low spatial frequencies, such as the ones of the magnocellular system. To test this idea, we have measured the spatio-temporal perceptive fields for transiently cued signals at various eccentricities using the classification images (CI) technique. At near eccentricities transient attention caused the perceptual templates to be sharper in space and characterized by much stronger high spatial frequency components. At the same time, they show a consistently larger temporal integration window. These effects of attention on perceptual filters are strongly reduced at far eccentricities and disappear when using longer target-cue lags. These data provide evidence in support of the parvocellular model of transient, exogenous attention, showing that in the presence of a well timed spatial cue observers rely on noisy evidence lasting longer and with finer spatial configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.