Multi-converter piezoelectric harvesters based on mono-axial and bi-axial configurations are proposed. The harvesters exploit two and four piezoelectric converters (PCs) and adopt an impinging spherical steel ball to harvest electrical energy from human motion. When the harvester undergoes a shake, a tilt, or a combination of the two, the ball hits one PC, inducing an impact-based frequency-up conversion. Prototypes of the harvesters have been designed, fabricated, fastened to the wrist of a person by means of a wristband and watchband, and experimentally tested for different motion levels. The PCs of the harvesters have been fed to passive diode-based voltage-doubler rectifiers connected in parallel to a storage capacitor, Cs = 220 nF. By employing the mono-axial harvester, after 8.5 s of consecutive impacts induced by rotations of the wrist, a voltage vcs(t) of 40.2 V across the capacitor was obtained, which corresponded to a stored energy of 178 μJ. By employing the bi-axial harvester, the peak instantaneous power provided by the PCs to an optimal resistive load was 1.58 mW, with an average power of 9.65 μW over 0.7 s. The proposed harvesters are suitable to scavenge electrical energy from low-frequency nonperiodical mechanical movements, such as human motion.
This work presents a novel development of the impact-based mechanism for piezoelectric vibration energy harvesters. More precisely, the effect of an impacting mass on a cantilever piezoelectric transducer is studied both in terms of the tip mass value attached to the cantilever and impact position to find an optimal condition for power extraction. At first, the study is carried out by means of parametric analyses at varying tip mass and impact position on a unimorph MEMS cantilever, and a suitable physical interpretation of the associated electromechanical response is given. The effect of multiple impacts is also considered. From the analysis, it emerges that the most effective configuration, in terms of power output, is an impact at the cantilever tip without a tip mass. By changing the value of the tip mass, a sub-optimal impact position along the beam axis can also be identified. Moreover, the effect of a tip mass is deleterious on the power performance, contrary to the well-known case of a resonant energy harvester. A mesoscale prototype with a bimorph transducer is fabricated and tested to validate the computational models. The comparison shows a good agreement between numerical models and the experiments. The proposed approach is promising in the field of consumer electronics, such as wearable devices, in which the impact-based device moves at the frequencies of human movement and is much lower than those of microsystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.