Plasma BDNF levels are influenced by hormonal status. Modifications in BDNF circulating levels during the menstrual cycle suggest a potential role for gonadal sex hormones (E(2) and progesterone) in regulating neurotrophin expression.
Multiple clinical and personal determinants affect sexual function in women with endometriosis, with potentially negative consequences on the sexual function of partners and quality of the relationship. Additional prospective and longitudinal investigations are warranted using specific instruments to analyze biopsychosocial variables of sexual pain in endometriosis patients and the effects that actual treatments have on measures of quality of sexual function and relationship.
Preeclampsia (PE) results in placental dysfunction and is one of the primary causes of maternal and fetal mortality and morbidity. During pregnancy, estrogen is produced primarily in the placenta by conversion of androgen precursors originating from maternal and fetal adrenal glands. These processes lead to increased plasma estrogen concentrations compared with levels in nonpregnant women. Aberrant production of estrogens could play a key role in PE symptoms because they are exclusively produced by the placenta and they promote angiogenesis and vasodilation. Previous assessments of estrogen synthesis during PE yielded conflicting results, possibly because of the lack of specificity of the assays. However, with the introduction of reliable analytical protocols using liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry, more recent studies suggest a marked decrease in estradiol levels in PE. The aim of this review is to summarize current knowledge of estrogen synthesis, regulation in the placenta, and biological effects during pregnancy and PE. Moreover, this review highlights the links among the occurrence of PE, estrogen biosynthesis, angiogenic factors, and cardiovascular risk factors. A close link between estrogen dysregulation and PE occurrence might validate estrogen levels as a biomarker but could also reveal a potential approach for prevention or cure of PE.
Starting from fetal life, estrogens are crucial in determining central gender dimorphism, and an estrogen-induced synaptic plasticity is well evident during puberty and seasonal changes as well as during the ovarian cycle. Estrogens act on the central nervous system (CNS) both through genomic mechanisms, modulating synthesis, release and metabolism of neurotransmitters, neuropeptides and neurosteroids, and through non-genomic mechanisms, influencing electrical excitability, synaptic function and morphological features. Therefore, estrogen's neuroactive effects are multifaceted and encompass a system that ranges from the chemical to the biochemical to the genomic mechanisms, protecting against a wide range of neurotoxic insults. Clinical evidences show that, during the climacteric period, estrogen withdrawal in the limbic system gives rise to modifications in mood, behaviour and cognition and that estrogen administration is able to improve mood and cognitive efficiency in post-menopause. Many biological mechanisms support the hypothesis that estrogens might protect against Alzheimer's disease (AD) by influencing neurotransmission, increasing cerebral blood flow, modulating growth proteins associated with axonal elongation and blunting the neurotoxic effects of beta-amyloid. On the contrary, clinical studies of estrogen replacement therapy (ERT) and cognitive function have reported controversial results, indicating a lack of efficacy of estrogens on cognition in post-menopausal women aged >or=65 years. These findings suggest the presence of a critical period for HRT-related neuroprotection and underlie the potential importance of early initiation of therapy for cognitive benefit. In this review, we shall first describe the multiple effects of steroids in the nervous system, which may be significant in the ageing process. A critical update of HRT use in women and a discussion of possible prospectives for steroid use are subsequently proposed.
Expression and secretion of neurotrophins, including brainderived neurotrophic factor (BDNF), are regulated also by neuronal activity. Data available in the literature suggest that BDNF central levels are influenced by light and dark. Diurnal changes of BDNF mRNA and protein contents have been demonstrated in the rat central nervous system. Based on these pieces of evidence, we investigated the hypothesis of a possible diurnal variation of BDNF circulating levels in human males. Moreover, we looked for a possible correlation with cortisol circadian rhythm, since both BDNF and cortisol are implicated in the maintenance of cerebral functions. In this study, 34 healthy young male volunteers were included. Five blood samples were drawn from each subject thrice in a month at regular 4-h intervals (0800, 1200, 1600, 2000, and 2400 h). BDNF and cortisol were measured in all samples. BDNF was determined by ELISA method. Our results show that plasma BDNF levels, as well as cortisol levels, are significantly higher in the morning when compared with the night (P!0 . 001), with a trend of constant decrease during the day. Furthermore, plasma BDNF and cortisol are positively correlated (Spearman indexZ0 . 8466). The present study is the first to demonstrate the presence of a diurnal rhythm of BDNF in humans. Moreover, the correlation found out between BDNF and cortisol circadian trend allows us to speculate that these two factors may be physiologically co-regulated, in order to maintain the homeostasis of integrated cerebral activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.