Cisplatin (CDDP) can be encapsulated within the central cavity of reconstituted (apo)ferritin, (A)Ft, to form a drug-loaded protein of potential great interest for targeted cancer treatments. In this study, the interactions occurring between cisplatin and native horse spleen Ft in CDDP-encapsulated AFt are investigated by high-resolution X-ray crystallography. A protein bound Pt center is unambiguously identified in AFt subunits by comparative analysis of difference Fourier electron density maps and of anomalous dispersion data. Indeed, a [Pt(NH3)2H2O](2+) fragment is found coordinated to the His132 residue located on the inner surface of the large AFt spherical cage. Remarkably, Pt binding does not alter the overall physicochemical features (shape, volume, polarity/hydrophobicity and electrostatic potential) of the outer surface of the AFt nanocage. CDDP-encapsulated AFt appears to be an ideal nanocarrier for CDDP delivery to target sites, as it possesses high biocompatibility and can be internalized by receptor mediated endocytosis, thus carrying the drug to tumor tissue with higher selectivity than free CDDP.
Auoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147. The gold-encapsulated nanocarrier has a cytotoxic effect on different aggressive human cancer cells, whereas it is significantly less cytotoxic for non-tumorigenic cells.
Proton translocation enables important processes in nature and man-made technologies. However, controlling proton conduction and fabrication of devices exploiting biomaterials remains a challenge. Even more difficult is the design of protein-based bulk materials without any functional starting scaffold for further optimization. Here, we show the rational design of proton-conducting, protein materials exceeding reported proteinaceous systems. The carboxylic acid–rich structures were evolved step by step by exploring various sequences from intrinsically disordered coils over supercharged nanobarrels to hierarchically spider β sheet containing protein-supercharged polypeptide chimeras. The latter material is characterized by interconnected β sheet nanodomains decorated on their surface by carboxylic acid groups, forming self-supportive membranes and allowing for proton conduction in the hydrated state. The membranes showed an extraordinary proton conductivity of 18.5 ± 5 mS/cm at RH = 90%, one magnitude higher than other protein devices. This design paradigm offers great potential for bioprotonic device fabrication interfacing artificial and biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.