The loss in performance during fuel cell operation is one of the critical factors that hamper fuel cells commercialization. This paper presents a research activity related to high temperature polymer electrode membrane fuel cell (HT-PEMFC) degradation. The aim of the study is to investigate catalyst degradation of membrane electrode assemblies (MEAs) subjected to load cycles. Two HT-PEM MEAs have been subjected to accelerated ageing tests based on load cycling. The cycles profile has been chosen in order to enhance catalyst degradation. Both the tests show a fuel cell performance loss lower than 30mV after 100,000 cycles at 600mAcm–2. In order to analyze the catalyst evolution, synchrotron small angle X-ray scattering (SAXS) has been employed. The catalyst degradation of the two conditioned samples has been compared with the data obtained from a new MEA that has been used as reference sample. The SAXS results showed a mean size increase of the platinum nanoparticles up to the 100%
Micro Combined Heat and Power (microCHP) systems based on High Temperature Polymer Electrolyte Membrane (HTPEM) fuel cells is a promising technology allowing to produce electricity and heat with very high efficiency and low emissions also for small power systems. Polybenzimidazole (PBI) based HTPEM fuel cells, thanks to their high CO tolerance, allow the use of fuels other than pure hydrogen by means of a simplified fuel processing unit. However, their relatively low performance and performance degradation rate are still issues to be overcome in order to allow commercialization. In this work, an energy simulation model developed by the authors in a previous research work, has been improved taking into account the degradation of the fuel cell stack in order to assess the performance of the system over long period of operation. The fuel cells performance degradation over time has been implemented on the basis of experimental data obtained by the authors and on data found in literature. The performance of the system has been studied in different configurations that include the introduction of a lithium battery storage in addition to the fuel cell stack.\ud
System parameters, such as electrical and thermal energy production, import/export of electricity and primary energy savings have been calculated and compared for different system configurations. Results show that battery integration can improve system performance and that the effect of fuel cell degradation reduces the electricity production. The effect on overall efficiency can be mitigated if heat is recovered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.