Due to rapidly spreading infectious diseases and the high incidence of other diseases such as cancer or metabolic syndrome, there is a continuous need for the development of rapid and accurate diagnosis methods. Screen-printed electrodes-based biosensors have been reported to offer reliable results, with high sensitivity and selectivity and, in some cases, low detection limits. There are a series of materials (carbon, gold, platinum, etc.) used for the manufacturing of working electrodes. Each version comes with advantages, as well as challenges for their functionalization. Thus, the aim is to review the most promising biosensors developed using screen-printed electrodes for the detection/quantification of proteins, biomarkers, or pathogenic microorganisms.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The purpose of the present study was to evaluate de influence of protein–sugar complexation on the stability and functionality of C-reactive protein, after exposure to constant high temperatures, in order to develop highly stable positive controls for in-vitro diagnostic tests. C-reactive protein is a plasmatic protein used as a biomarker for the diagnosis of a series of health problems such as ulcerative colitis, cardiovascular diseases, metabolic syndrome, due to its essential role in the evolution of chronic inflammation. The sugar–protein interaction was investigated using steady state and time resolved fluorescence. The results revealed that there are more than two classes of tryptophan, with different degree of accessibility for the quencher molecule. Our study also revealed that sugar–protein complexes have superior thermostability, especially after gamma irradiation at 2 kGy, the protein being stable and functional even after 22 days exposure to 40 °C.
The purpose of the present study was to evaluate de influence of glycosylation on the stability and functionality of C-reactive protein, after exposure to constant high temperatures. C-reactive protein is a plasmatic protein used as a biomarker for the diagnosis of a series of health problems such as ulcerative colitis, cardiovascular diseases, metabolic syndrome, due to its essential role in the evolution of chronic inflammation. The sugar-protein interaction was investigated using steady state and time resolved fluorescence. The results revealed that there are more than two classes of tryptophan, with different degree of accessibility for the quencher molecule. Our study also revealed that sugar-protein complexes have superior thermostability, the protein being stable and functional even after 22 days exposure to 40oC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.