Using a rigorous electromagnetic analysis of two-dimensional (or crossed) gratings, we account, in a first step, for the enhanced transmission of a sub-wavelength hole array pierced inside a metallic film, when plasmons are simultaneously excited at both interfaces of the film. Replacing the hole array by a continuous metallic film, we then show that resonant extraordinary transmission can still occur, provided the film is modulated. The modulation may be produced in both a one-dimensional and a two dimensional geometry either by periodic surface deformation or by adding an array of high index pillars. Transmittivity higher than 80% is found when surface plasmons are excited at both interfaces, in a symmetric configuration.
Hybrid nanostructures, in which a known number of quantum emitters are strongly coupled to a plasmonic resonator, should feature optical properties at room temperature such as few-photon nonlinearities or coherent superradiant emission. We demonstrate here that this coupling regime can only be reached with dimers of gold nanoparticles in stringent experimental conditions, when the interparticle spacing falls below 2 nm. Using a short transverse DNA double-strand, we introduce 5 dye molecules in the gap between two 40 nm gold particles and actively decrease its length down to sub-2 nm values by screening electrostatic repulsion between the particles at high ionic strengths. Single-nanostructure scattering spectroscopy then evidences the observation of a strong-coupling regime in excellent agreement with electrodynamic simulations. Furthermore, we highlight the influence of the planar facets of polycrystalline gold nanoparticles on the probability of observing strongly coupled hybrid nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.