Abstract. Organic nitrates are secondary species in the atmosphere. Their fate is related to the chemical transport of pollutants from polluted areas to more distant zones. While their gas-phase chemistry has been studied, their reactivity in condensed phases is far from being understood. However, these compounds represent an important fraction of organic matter in condensed phases. In particular, their partition to the aqueous phase may be especially important for oxidized organic nitrates for which water solubility increases with functionalization. This work has studied for the first time the aqueous-phase ⚫OH-oxidation kinetics of four alkyl nitrates (isopropyl nitrate, isobutyl nitrate, 1-pentyl nitrate, and isopentyl nitrate) and three functionalized organic nitrates (α-nitrooxyacetone, 1-nitrooxy-2-propanol, and isosorbide 5-mononitrate) by developing a novel and accurate competition kinetic method. Low reactivity was observed, with kOH ranging from 8×107 to 3.1×109 L mol−1 s−1 at 296±2 K. Using these results, a previously developed aqueous-phase structure–activity relationship (SAR) was extended, and the resulting parameters confirmed the extreme deactivating effect of the nitrate group, up to two adjacent carbon atoms. The achieved extended SAR was then used to determine the ⚫OH-oxidation rate constants of 49 organic nitrates, including hydroxy nitrates, ketonitrates, aldehyde nitrates, nitrooxy carboxylic acids, and more functionalized organic nitrates such as isoprene and terpene nitrates. Their multiphase atmospheric lifetimes towards ⚫OH oxidation were calculated using these rate constants, and they were compared to their gas-phase lifetimes. Large differences were observed, especially for polyfunctional organic nitrates: for 50 % of the proposed organic nitrates for which the ⚫OH reaction occurs mainly in the aqueous phase (more than 50 % of the overall removal), their ⚫OH-oxidation lifetimes increased by 20 % to 155 % under cloud/fog conditions (liquid water content LWC = 0.35 g m−3). In particular, for 83 % of the proposed terpene nitrates, the reactivity towards ⚫OH occurred mostly (>98 %) in the aqueous phase, while for 60 % of these terpene nitrates, their lifetimes increased by 25 % to 140 % compared to their gas-phase reactivity. We demonstrate that these effects are of importance under cloud/fog conditions but also under wet aerosol conditions, especially for the terpene nitrates. These results suggest that considering aqueous-phase ⚫OH-oxidation reactivity of biogenic nitrates is necessary to improve the predictions of their atmospheric fate.
Abstract. Ammonium sulfate (AS) particles are widely used for studying the physical-chemistry processes of aerosols and for instrument calibrations. Small quantities of organic matter can greatly influence the studied properties, as observed by many laboratory studies. In this work, monodisperse particles (from 200 nm to 500 nm) were generated by nebulizing various AS solutions and organic impurities were quantified relative to sulfate using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The organic content found in AS solutions was also tentatively identified using a Liquid Chromatography–tandem Mass Spectrometry (LC-MS). The results from both analytical techniques were consistent and demonstrated that the organic impurities contained oxygen, nitrogen and/or sulfur, their molecular masses ranged from m/z 69 to 420, they likely originate from the commercial AS crystals. For AS particle sizes ranging from 200 nm to 500 nm, the total mass fraction of organic (relative to sulfate) ranged from 3.8 % to 1.5 % respectively. An inorganic-organic mixture model suggested that the organic impurities were coated on the AS particle surface with a density of 1.1 × 10−3 g m−2. A series of tests were performed to remove the organic content (using pure N2 in the flow, ultrapure water in the solutions, and very high AS quality), showing that at least 40 % of the organic impurities could be removed. In conclusion, it is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Abstract. Ammonium sulfate (AS) particles are widely used for studying the physical–chemistry processes of aerosols and for instrument calibrations. Small quantities of organic matter can greatly influence the studied properties, as observed by many laboratory studies. In this work, monodisperse particles (200–500 nm aerodynamic diameter) were generated by nebulizing various AS solutions and organic impurities were quantified relative to sulfate using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The organic content found in AS solutions was also tentatively identified using a liquid chromatography–tandem mass spectrometer (LC–MS). The results from both analytical techniques were consistent and demonstrated that the organic impurities contained oxygen, nitrogen, and/or sulfur, their molecular masses ranged from m/z 69 to 420, and they likely originate from the commercial AS crystals. For AS particle sizes ranging from 200 to 500 nm, the total mass fraction of organic compounds (relative to sulfate) ranged from 3.8 % to 1.5 %, respectively. An inorganic–organic mixture model suggested that the organic impurities were coated on the AS particle with a surface density of 1.1 × 10−3 g m−2. A series of tests were performed to remove the organic content (using pure N2 in the flow, ultrapure water in the solutions, and very high AS quality), showing that at least 40 % of the organic impurities could be removed. In conclusion, it is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.