ABSTRACT. We analyze the 2D magnetic Laplacian in the semiclassical limit in the case when the magnetic field vanishes along a smooth curve. In particular, we prove local and microlocal estimates for the eigenfunctions and a complete asymptotic expansion of the eigenpairs in powers of h 1/6 .
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the y-direction. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of the fiber operators as functions of the wave number and establish their asymptotic behavior. Because the fiber operators are reflection symmetric, the band functions may be classified as odd or even. The odd band functions have a unique absolute minimum. We calculate the effective mass at the minimum and prove that it is positive. The even band functions are monotone decreasing. We prove that the eigenvalues of an Airy operator, respectively, harmonic oscillator operator, describe the asymptotic behavior of the band functions for large negative, respectively positive, wave numbers. We prove a Mourre estimate for perturbations of the magnetic Schrödinger operator and establish the existence of absolutely continuous spectrum in certain energy intervals. We prove lower bounds on magnetic edge currents for states with energies in the same intervals. We also prove that these lower bounds imply stable lower bounds for the asymptotic currents. Because of the unique, non-degenerate minimum of the first band function, we prove that a perturbation by a slowly decaying negative potential creates an infinite number of eigenvalues accumulating at the bottom of the essential spectrum from below. We establish the asymptotic behavior of the eigenvalue counting function for these infinitely-many eigenvalues below the bottom of the essential spectrum.
Abstract. We investigate the edge conductance of particles submitted to an Iwatsuka magnetic field, playing the role of a purely magnetic barrier. We also consider magnetic guides generated by generalized Iwatsuka potentials. In both cases we prove quantization of the edge conductance. Next, we consider magnetic perturbations of such magnetic barriers or guides, and prove stability of the quantized value of the edge conductance. Further, we establish a sum rule for edge conductances. Regularization within the context of disordered systems is discussed as well.
In this note we consider a Landau Hamiltonian perturbed by a random magnetic potential of Anderson type. For a given number of bands, we prove the existence of both strongly localized states at the edges of the spectrum and dynamical delocalization near the center of the bands in the sense that wave packets travel at least at a given minimum speed. We provide explicit examples of magnetic perturbations that split the Landau levels into full intervals of spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.