Toxoplasma gondii possesses a limited set of actin-regulatory proteins and relies on only three formins (FRMs) to nucleate and polymerize actin. We combined filamentous actin (F-actin) chromobodies with gene disruption to assign specific populations of actin filaments to individual formins. FRM2 localizes to the apical juxtanuclear region and participates in apicoplast inheritance. Restricted to the residual body, FRM3 maintains the intravacuolar cell-cell communication. Conoidal FRM1 initiates a flux of F-actin crucial for motility, invasion and egress. This flux depends on myosins A and H and is controlled by phosphorylation via PKG (protein kinase G) and CDPK1 (calcium-dependent protein kinase 1) and by methylation via AKMT (apical lysine methyltransferase). This flux is independent of microneme secretion and persists in the absence of the glideosome-associated connector (GAC). This study offers a coherent model of the key players controlling actin polymerization, stressing the importance of well-timed post-translational modifications to power parasite motility.
Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium, the causative agent of malaria and Toxoplasma, one of the most widespread zoonotic pathogens. Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion 1 . Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function 2 . The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals or plants.Here we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple Non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata, and Apicomplexa, that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defense for free-living unicellular eukaryotes and host cell injection in intracellular parasites.Apicomplexan parasites are invasive and defined by the presence of an apical complex used to recognize and gain entry into host cells. It includes two secretory organelles: micronemes and rhoptries 3 . Microneme proteins are secreted to the parasite surface and mediate motility, host cell recognition and invasion 4 . Rhoptry proteins are injected directly into the host cell 2 , where they anchor the machinery propelling the parasite into the host cell 5 , facilitate nutrient
The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.
The phylum Apicomplexa has been defined by the presence of the apical complex, a structure composed of secretory organelles and specific cytoskeletal elements. A conspicuous feature of the apical complex in many apicomplexans is the conoid, a hollow tapered barrel structure composed of tubulin fibers. In Toxoplasma gondii, the apical complex is a central site of convergence for calcium-related and lipid-mediated signaling pathways that coordinate conoid protrusion, microneme secretion and actin polymerization, to initiate gliding motility. Through cutting-edge technologies, great progress has recently been made in discovering the structural subcomponents and proteins implicated in the biogenesis and stability of the apical complex and, in turn, these discoveries shed new light on the function and evolution of this definitive structure. HighlightsRecent methods, such as proximity labeling, localization of organelle proteins by isotope tagging, and ultrastructure expansion microscopy, have greatly advanced the proteomic characterization of the different apical complex subcompartments.The subpellicular microtubules (SPMTs) are decorated by unique microtubule associated proteins and emerge from the apical polar ring (APR) by an unknown mechanism. The conoid is composed of open tubulin fibers that are bent by the recently characterized DCX protein.Recently characterized proteins, such as AC9, AC10, and ERK7, are essential for the stability of the APR, the conoid, and the SPMTs.In addition to its structural complexity, the apical complex acts as a signaling hub by being the point of convergence for many regulatory pathways.Broad evidence suggests that the conoid is derived from the flagellar root apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.