Background: A large proportion of patients with a SARS-Cov-2-associated respiratory failure develop an acute respiratory distress syndrome (ARDS). It has been recently suggested that SARS-Cov-2-associated ARDS may differ from usual non-SARS-Cov-2-associated ARDS by higher respiratory system compliance (C RS ), lower potential for recruitment with positive end-expiratory pressure (PEEP) contrasting with severe shunt fraction. The purpose of the study was to systematically assess respiratory mechanics and recruitability in SARS-Cov-2-associated ARDS. Methods:Gas exchanges, C RS and hemodynamics were assessed at 2 levels of PEEP (15 cmH 2 O and 5 cmH 2 O) within 36 h (day1) and from 4 to 6 days (day 5) after intubation. The recruited volume was computed as the difference between the volume expired from PEEP 15 to 5 cmH 2 O and the volume predicted by compliance at PEEP 5 cmH 2 O (or above airway opening pressure). The recruitment-to-inflation (R/I) ratio (i.e. the ratio between the recruited lung compliance and C RS at PEEP 5 cmH 2 O) was used to assess lung recruitability. A R/I ratio value higher than or equal to 0.5 was used to define highly recruitable patients. Results:The R/I ratio was calculated in 25 of the 26 enrolled patients at day 1 and in 15 patients at day 5. At day 1, 16 (64%) were considered as highly recruitable (R/I ratio median [interquartile range] 0.7 [0.55-0.94]) and 9 (36%) were considered as poorly recruitable (R/I ratio 0.41 [0.31-0.48]). The PaO 2 /FiO 2 ratio at PEEP 15 cmH 2 O was higher compared to PEEP 5 cmH 2 O only in highly recruitable patients (173 [139-236] vs 135 [89-167] mmHg; p < 0.01). Neither PaO 2 /FiO 2 or C RS measured at PEEP 15 cmH 2 O or at PEEP 5 cmH 2 O nor changes in PaO 2 /FiO 2 or C RS in response to PEEP changes allowed to identify highly or poorly recruitable patients. Conclusion:In this series of 25 patients with SARS-Cov-2 associated ARDS, 64% were considered as highly recruitable and only 36% as poorly recruitable based on the R/I ratio performed on the day of intubation. This observation suggests that a systematic R/I ratio assessment may help to guide initial PEEP titration to limit harmful effect of unnecessary high PEEP in the context of Covid-19 crisis.
Activation of arginine-vasopressin is one of the hormonal responses to face vasodilation-related hypotension. Released from the post-pituitary gland, vasopressin induces vasoconstriction through the activation of V1a receptors located on vascular smooth muscle cells. Due to its non-selective receptor affinity arginine-vasopressin also activates V2 (located on renal tubular cells of collecting ducts) and V1b (located in the anterior pituitary and in the pancreas) receptors, thereby potentially promoting undesired side effects such as anti-diuresis, procoagulant properties due to release of the von Willebrand's factor and platelet activation. Finally, it also cross-activates oxytocin receptors. During septic shock, vasopressin plasma levels were reported to be lower than expected, and a hypersensitivity to its vasopressor effect is reported in such situation. Terlipressin and selepressin are synthetic vasopressin analogues with a higher affinity for the V1 receptor, and, hence, potentially less side effects. In this narrative review, we present the current knowledge of the rationale, benefits and risks of vasopressin use in the setting of septic shock and vasoplegic shock following cardiac surgery. Clearly, vasopressin administration allows reducing norepinephrine requirements, but so far, no improvement of survival was reported and side effects are frequent, particularly ischaemic events. Finally, we will discuss the current indications for vasopressin and its agonists in the setting of septic shock, and the remaining unresolved questions.
Background Differences in physiology of ARDS have been described between COVID-19 and non-COVID-19 patients. This study aimed to compare initial values and longitudinal changes in respiratory system compliance (CRS), oxygenation parameters and ventilatory ratio (VR) in patients with COVID-19 and non-COVID-19 pulmonary ARDS matched on oxygenation. Methods 135 patients with COVID-19 ARDS from two centers were included in a physiological study; 767 non-COVID-19 ARDS from a clinical trial were used for the purpose of at least 1:2 matching. A propensity-matching was based on age, severity score, oxygenation, positive end-expiratory pressure (PEEP) and pulmonary cause of ARDS and allowed to include 112 COVID-19 and 198 non-COVID pulmonary ARDS. Results The two groups were similar on initial oxygenation. COVID-19 patients had a higher body mass index, higher CRS at day 1 (median [IQR], 35 [28–44] vs 32 [26–38] ml cmH2O−1, p = 0.037). At day 1, CRS was correlated with oxygenation only in non-COVID-19 patients; 61.6% and 68.2% of COVID-19 and non-COVID-19 pulmonary ARDS were still ventilated at day 7 (p = 0.241). Oxygenation became lower in COVID-19 than in non-COVID-19 patients at days 3 and 7, while CRS became similar. VR was lower at day 1 in COVID-19 than in non-COVID-19 patients but increased from day 1 to 7 only in COVID-19 patients. VR was higher at days 1, 3 and 7 in the COVID-19 patients ventilated using heat and moisture exchangers compared to heated humidifiers. After adjustment on PaO2/FiO2, PEEP and humidification device, CRS and VR were found not different between COVID-19 and non-COVID-19 patients at day 7. Day-28 mortality did not differ between COVID-19 and non-COVID-19 patients (25.9% and 23.7%, respectively, p = 0.666). Conclusions For a similar initial oxygenation, COVID-19 ARDS initially differs from classical ARDS by a higher CRS, dissociated from oxygenation. CRS become similar for patients remaining on mechanical ventilation during the first week of evolution, but oxygenation becomes lower in COVID-19 patients. Trial registration: clinicaltrials.gov NCT04385004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.