The Planck and Herschel missions are currently measuring the far-infrared to millimeter emission of dust, which combined with existing IR data, will for the first time provide the full spectral energy distribution (SED) of the galactic interstellar medium dust emission, from the mid-IR to the mm range, with an unprecedented sensitivity and down to spatial scales ∼30 . Such a global SED will allow a systematic study of the dust evolution processes (e.g. grain growth or fragmentation) that directly affect the SED because they redistribute the dust mass among the observed grain sizes. The dust SED is also affected by variations of the radiation field intensity. Here we present a versatile numerical tool, DustEM, that predicts the emission and extinction of dust grains given their size distribution and their optical and thermal properties. In order to model dust evolution, DustEM has been designed to deal with a variety of grain types, structures and size distributions and to be able to easily include new dust physics. We use DustEM to model the dust SED and extinction in the diffuse interstellar medium at high-galactic latitude (DHGL), a natural reference SED that will allow us to study dust evolution. We present a coherent set of observations for the DHGL SED, which has been obtained by correlating the IR and HI-21 cm data. The dust components in our DHGL model are (i) polycyclic aromatic hydrocarbons; (ii) amorphous carbon and (iii) amorphous silicates. We use amorphous carbon dust, rather than graphite, because it better explains the observed high abundances of gas-phase carbon in shocked regions of the interstellar medium. Using the DustEM model, we illustrate how, in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel for smaller spatial scales) photometric band ratios of the dust SED can disentangle the influence of the exciting radiation field intensity and constrain the abundance of small grains (a < ∼ 10 nm) relative to the larger grains. We also discuss the contributions of the different grain populations to the IRAS, Planck (and similarly to Herschel) channels. Such information is required to enable a study of the evolution of dust as well as to systematically extract the dust thermal emission from CMB data and to analyze the emission in the Planck polarized channels. The DustEM code described in this paper is publically available.
SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) [Website] is a proposed all-sky spectroscopic survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. SPHEREx will scan a series of Linear Variable Filters systematically across the entire sky. The SPHEREx data set will contain R=40 spectra fir 0.75< λ <4.1µm and R=150 spectra for 4.1< λ <4.8µm for every 6.2 arcsecond pixel over the entire-sky. In this paper, we detail the extra-galactic and cosmological studies SPHEREx will enable and present detailed systematic effect evaluations. We also outline the Ice and Galaxy Evolution Investigations. I. SPHEREX MISSION OVERVIEWSPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer; PI: J. Bock) is a proposed all-sky survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. All of these exciting science themes are addressed by a single survey, with a single instrument, providing the first near-infrared spectroscopy of the complete sky. In this paper, we will focus on the cosmological science enabled by SPHEREx and outline the Galactic Ices and the Epoch of Reionization (EOR) scientific investigations.SPHEREx will probe the origin of the Universe by constraining the physics of inflation, the superluminal expansion of the Universe that took place some 10 −32 s after the Big Bang. SPHEREx will study its imprints in the threedimensional large-scale distribution of matter by measuring galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will investigate the origin of water and biogenic molecules in all phases of planetary system formation -from molecular clouds to young stellar systems with protoplanetary disks -by measuring absorption spectra to determine the abundance and composition of ices toward > 2 × 10 4 Galactic targets. Interstellar ices are the likely source for water and organic molecules, the chemical basis of life on Earth, and knowledge of their abundance is key to understanding the formation of young planetary systems as well as the prospects for life on other planets.SPHEREx will chart the origin and history of galaxy formation through a deep survey mapping large-scale structure. This technique measures the total light produced by all galaxy populations, complementing studies based on deep galaxy counts, to trace the history of galactic light production from the present day to the first galaxies that ended the cosmic dark ages.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 ≤ λ ≤...
We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid-and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in our ∼44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided -2by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously-identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and AGN.Subject headings: stars: formation -stars: circumstellar matter -stars: pre-main sequenceinfrared: starswhere m is the reported magnitude (and F ν the flux density) for a given object, Z = 18.259, 17.204, and 14.837, and f = 1.94×10 −16 , 4.76×10 −16 , and 5.71×10 −15 ergs cm −2 s −1Å−1 counts −1 sec for U , UVW1, and UVW2 (respectively). In the equation, λ is in units ofÅ, and c is 3×10 18Å s −1 The effective wavelengths are 0.344, 0.291, and 0.212 µm for U , UVW1, and UVW2. There are ∼1600 objects with XMM-Newton OM flux densities in our catalog (0.2% of the entire catalog).We note that many of the X-ray detected XEST sources are likely background galaxies (see Güdel et al. 2007) and that XEST included regions not covered by our map, such as L1551.The XEST team assembled a catalog of supporting data from the literature, such as optical photometric measurements, for all of the previously-identified Taurus members (see §3.1.1 below); we have included these photometric points in our database, converting Johnson magnitudes to flux densities using zero-points available in the literature (e.g., Cox 2001 and references therein).The SEDs presented in this paper use all of these supporting data where available (except for the X-ray fluxes), and are presented as λF λ in cgs units (erg s −1 cm −2 ), against λ in microns.2 In SDSS, a "maggy" is the ratio of the flux density of the object to a standard flux density. The Sloan magnitudes are AB magnitudes, as opposed to Vega magnitudes. In the AB system, a flat spectrum object with 3631 Jy at each band should have every magnitude equal to zero, and all maggies equal to one. Flux densities returned by th...
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2 • × 2 • tiles approximately centered at l = 30 • and l = 59 • . The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A V ∼ 1 is exceeded for the regions in the l = 59 • field; a A V value between 5 and 10 is found for the l = 30 • field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm −2 . Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
Spitzer/IRAC images of extended emission provide a new insight on the nature of small dust particles in the Galactic diffuse interstellar medium. We measure IRAC colors of extended emission in several fields covering a range of Galactic latitudes and longitudes outside of star forming regions. We determine the nature of the Galactic diffuse emission in Spitzer/IRAC images by combining them with spectroscopic data. We show that PAH features make the emission in the IRAC 5.8 and 8.0 µm channels, whereas the 3.3 µm feature represents only 20 to 50% of the IRAC 3.6 µm channel. A NIR continuum is necessary to account for IRAC 4.5 µm emission and the remaining fraction of the IRAC 3.6 µm emission. This continuum cannot be accounted by scattered light. It represents 9% of the total power absorbed by PAHs and 120% of the interstellar UV photon flux. The 3.3 µm feature is observed to vary from field-to-field with respect to the IRAC 8.0 µm channel. The continuum and 3.3 µm feature intensities are not correlated. We present model calculations which relate our measurements of the PAHs spectral energy distribution to the particles size and ionization state. Cation and neutral PAHs emission properties are inferred empirically from NGC 7023 observations. PAHs caracteristics are best constrained in a line of sight towards the inner Galaxy, dominated by the Cold Neutral Medium phase: we find that the PAH cation fraction is about 50% and that their mean size is about 60 carbon atoms. A significant field-to-field dispersion in the PAH mean size, from 40 to 80 carbon atoms, is necessary to account for the observed variations in the 3.3 µm feature intensity relative to the IRAC 8.0 µm flux. However, one cannot be secure about the feature interpretation as long as the continuum origin remains unclear. The continuum and 3.3 µm feature emission process could be the same even if they do not share carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.