Soil surveys are critical for maintaining sustainable use of natural resources while minimizing harmful impacts to the ecosystem. A key soil attribute for many environmental factors, such as CO2 budget, soil fertility and sustainability, is soil organic matter (SOM), as well as its sequestration. Soil spectroscopy is a popular method to assess SOM content rapidly in both field and laboratory domains. However, SOM source composition differs from soil to soil, and the use of spectral-based models for quantifying SOM may present limited accuracy when applying a generic approach to SOM assessment. We therefore examined the extent to which the generic approach can assess SOM contents of different origin using spectral-based models. We created an artificial big dataset composed of pure dune sand as a SOM-free background, which was artificially mixed with increasing amounts of different organic matter (OM) sources obtained from commercial compost of different origins. Dune sand has high albedo and yields optimal conditions for SOM detection. This study combined two methods: partial least squares regression for the prediction of SOM content from reflectance values across the 400–2500 nm region and a soil spectral detection limit (SSDL) to judge the prediction accuracy. Spectral-based models to assess SOM content were evaluated with each OM source as well as with a merged dataset that contained all of the generated samples (generic approach). The latter was concluded to have limitations for assessing low amounts of SOM (<0.6%), even under controlled conditions. Moreover, some of the OM sources were more difficult to monitor than others; accordingly, caution is advised when different SOM sources are present in the examined population.
Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while in si t u soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions (r 2 = 0.59 for gravimetric method; r 2 = 0.65 for TDR). The proposed method shows promising results to map the soil water content even over Manuscript
Water infiltration rate (WIR) into the soil profile was investigated through a comprehensive study harnessing spectral information of the soil surface. As soil spectroscopy provides invaluable information on soil attributes, and as WIR is a soil surface-dependent property, field spectroscopy may model WIR better than traditional laboratory spectral measurements. This is because sampling for the latter disrupts the soil-surface status. A field soil spectral library (FSSL), consisting of 114 samples with different textures from six different sites over the Mediterranean basin, combined with traditional laboratory spectral measurements, was created. Next, partial least squares regression analysis was conducted on the spectral and WIR data in different soil texture groups, showing better performance of the field spectral observations compared to traditional laboratory spectroscopy. Moreover, several quantitative spectral properties were lost due to the sampling procedure, and separating the samples according to texture gave higher accuracies. Although the visible near-infrared–shortwave infrared (VNIR–SWIR) spectral region provided better accuracy, we resampled the spectral data to the resolution of a Cubert hyperspectral sensor (VNIR). This hyperspectral sensor was then assembled on an unmanned aerial vehicle (UAV) to apply one selected spectral-based model to the UAV data and map the WIR in a semi-vegetated area within the Alento catchment, Italy. Comprehensive spectral and WIR ground-truth measurements were carried out simultaneously with the UAV–Cubert sensor flight. The results were satisfactorily validated on the ground using field samples, followed by a spatial uncertainty analysis, concluding that the UAV with hyperspectral remote sensing can be used to map soil surface-related soil properties.
The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m–1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.