A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae, but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T. It was most closely related to Desulfovibrio portus MSL79T (96.96 %), followed by Desulfovibrio aespoeensis Aspo-2T (96.11 %), Desulfovibrio piezophilus C1TLV30T (96.04 %) and Desulfovibrio profundus DSM 11384T (95.17 %). Other available sequences shared less than 93.33 % 16S rRNA gene sequence similarity. Cells were Gram-staining-negative, anaerobic, motile vibrios (2-6×0.4-0.6 µm). Growth was observed at salinities ranging from 0.2 to 6 % (optimum 2.5 %), from pH 5 to 8 (optimum pH 6.5-7) and at temperatures between 9 and 40 °C (optimum 30-35 °C). J2T was piezophilic, growing optimally at 10 MPa (range 0-30 MPa). J2T used lactate, malate, pyruvate, formate and hydrogen as energy sources. Sulfate, thiosulfate, sulfite, fumarate and nitrate were used as terminal electron acceptors. Lactate and pyruvate were fermented. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C17 : 0. The DNA G+C content of strain J2T was 63.5 mol%. The combined genotypic and phenotypic data show that strain J2T represents a novel species of a novel genus in the family Desulfovibrionaceae, for which the name Pseudodesulfovibrio indicus gen. nov., sp. nov. is proposed, with the type strain J2T (=MCCC 1A01867T = DSM 101483T). We also propose the reclassification of D. piezophilus as Pseudodesulfovibrio piezophilus comb. nov., D. profundus as Pseudodesulfovibrio profundus comb. nov., D. portus as Pseudodesulfovibrio portus comb. nov. and D. aespoeensis as Pseudodesulfovibrio aespoeensis comb. nov.
Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female’s abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria , and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.
A number of trace metals play essential roles in marine ecosystem structure and biological productivity. Until recently, it has been argued that phytoplankton access primarily dissolved iron, while particulate iron was considered a refractory material with little use biologically and limited interaction with the dissolved pool. In order to assess the transfer mechanisms between sediment-sourced particulate trace metals and the dissolved pool, we conducted a 14-month incubation that reacted resuspended sediments with natural seawater, both originating from the Kerguelen area (KEOPS cruises; Southern Ocean), in the dark, and at concentrations replicating natural conditions. Three types of sediments were investigated (named BioSi, BioSi + Ca, and Basalt), mostly composed of (i) biogenic silica (bSiO2), (ii) bSiO2 and calcite, and (iii) basaltic fragments, respectively. The release of dissolved silicon (dSi), iron (dFe) and manganese (dMn) was monitored regularly throughout the incubation, as well as living bacteria density and Fe organic ligands. Depending on the origin and composition of the sediment, unique dFe and dMn fluxes were observed, including a strong decoupling between dFe and dMn. The basaltic sediment released up to 1.09 ± 0.04 nmol L−1 of dFe and 0.28 ± 0.09 nmol L−1 of dMn, while the biogenic sediments released a higher 3.91 ± 0.04 nmol L−1 and 8.03 ± 0.42 nmol L−1 of dFe and dMn, respectively. Several factors influencing the release and removal of dFe and dMn were discernable at the temporal sampling resolution of the incubation, including the structural composition of the sediment, bacterial abundance, and the formation of manganese oxides. The regular sampling over short Highlights ► Resuspended sedimentary particles contribute to a substantial flux of trace metals into the overlying oceanic water column. ► The release of dissolved Fe and Mn from resuspended sedimentary particles is decoupled through time
cited By 8International audienceWe present ecological and isotopic (δ18O and δ13C) data on benthic foraminifera sampled from 4 deep-sea stations in a pockmark field from the deep-water Niger delta (Gulf of Guinea, Equatorial Atlantic Ocean). In addition, a series of sedimentological and (bio)geochemical data are shown to back up foraminiferal observations. All stations are located within 1.2km of each other, so prevailing oceanographic conditions can be assumed to be similar at each site. Two of the sites (GMMC-01 and GMMC-02) are located in a pockmark (named "pockmark A") where current methane seepages were recorded by ROV observations. A third station (GMMC-03) is located in the topographic depression interpreted as a collapsed pockmark (named "pockmark B"). The fourth site (GMMC-04) is a reference station, without evidence of past or present seepages. Our observations show that degraded organic matter with low bio-availability is present at all stations with a preferential burial of organic compounds in topographic depressions (GMMC-03 station). Authigenic aragonite is abundant in surface sediments at stations GMMC-01 and -02. Its precipitation is likely related to high rates of methane oxidation during past seep events in episodically active pockmark A. In contrast, the absence of anaerobic methanotrophic Archaea (ANME) during the sampling period (November 2011) suggests that only moderate sulphide and methane oxidation take place close to the sediment-water interface. Compared to the reference site GMMC-04, living foraminifera at the collapsed and episodically active pockmarks show minor changes in terms of diversity, standing stocks and faunal composition. However, the δ13C signal of living and dead (but well-preserved) foraminiferal species (Ceratobulimina contraria, Melonis barleeanus, Uvigerina peregrina) is depleted in the episodically active pockmark A compared to the other stations. Overgrowth of authigenic carbonate on altered foraminifera generates an important shift to lower δ13C values. Dead faunas carry a complex time-averaged message, integrating taphonomic gains and losses related to the temporal variability of gas emission. They reveal major faunal differences that may be useful to detect gas hydrate seepages in different pockmark stages. © 2014 Elsevier Ltd
International audienceThe presently active region of the Congo deep-sea fan (around 330 000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700–5100 m water depth and 750–800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.