In 18 F-FDG PET, tumors are often characterized by their metabolically active volume and standardized uptake value (SUV). However, many approaches have been proposed to estimate tumor volume and SUV from 18 F-FDG PET images, none of them being widely agreed upon. We assessed the accuracy and robustness of 5 methods for tumor volume estimates and of 10 methods for SUV estimates in a large variety of configurations. Methods: PET acquisitions of an anthropomorphic phantom containing 17 spheres (volumes between 0.43 and 97 mL, sphere-to-surrounding-activity concentration ratios between 2 and 68) were used. Forty-one nonspheric tumors (volumes between 0.6 and 92 mL, SUV of 2, 4, and 8) were also simulated and inserted in a real patient 18 F-FDG PET scan. Four threshold-based methods (including one, T bgd , accounting for background activity) and a model-based method (Fit) described in the literature were used for tumor volume measurements. The mean SUV in the resulting volumes were calculated, without and with partial-volume effect (PVE) correction, as well as the maximum SUV (SUV max ). The parameters involved in the tumor segmentation and SUV estimation methods were optimized using 3 approaches, corresponding to getting the best of each method or testing each method in more realistic situations in which the parameters cannot be perfectly optimized. Results: In the phantom and simulated data, the T bgd and Fit methods yielded the most accurate volume estimates, with mean errors of 2% 6 11% and 28% 6 21% in the most realistic situations. Considering the simulated data, all SUV not corrected for PVE had a mean bias between 231% and 246%, much larger than the bias observed with SUV max (211% 6 23%) or with the PVE-corrected SUV based on T bgd and Fit (22% 6 10% and 3% 6 24%). Conclusion: The method used to estimate tumor volume and SUV greatly affects the reliability of the estimates. The T bgd and Fit methods yielded low errors in volume estimates in a broad range of situations. The PVE-corrected SUV based on T bgd and Fit were more accurate and reproducible than SUV max .
(18)F-fluoro-deoxy-glucose ((18)F-FDG) positron emission tomography (PET) is one of the most sensitive and specific imaging modalities for the diagnosis of non-small cell lung cancer. A drawback of PET is that it requires several minutes of acquisition per bed position, which results in images being affected by respiratory blur. Respiratory gating techniques have been developed to deal with respiratory motion in the PET images. However, these techniques considerably increase the level of noise in the reconstructed images unless the acquisition time is increased. The aim of this paper is to evaluate a four-dimensional (4D) image reconstruction algorithm that combines the acquired events in all the gates whilst preserving the motion deblurring. This algorithm was compared to classic ordered subset expectation maximization (OSEM) reconstruction of gated and non-gated images, and to temporal filtering of gated images reconstructed with OSEM. Two datasets were used for comparing the different reconstruction approaches: one involving the NEMA IEC/2001 body phantom in motion, the other obtained using Monte-Carlo simulations of the NCAT breathing phantom. Results show that 4D reconstruction reaches a similar performance in terms of the signal-to-noise ratio (SNR) as non-gated reconstruction whilst preserving the motion deblurring. In particular, 4D reconstruction improves the SNR compared to respiratory-gated images reconstructed with the OSEM algorithm. Temporal filtering of the OSEM-reconstructed images helps improve the SNR, but does not achieve the same performance as 4D reconstruction. 4D reconstruction of respiratory-gated images thus appears as a promising tool to reach the same performance in terms of the SNR as non-gated acquisitions while reducing the motion blur, without increasing the acquisition time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.