Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Optimal athletic performance requires meeting the energetic demands of the muscle fibers, which are a function of myosin ATPase enzymatic activity. Skeletal muscle with a predominant oxidative metabolism underlies equine athletic success. Sodium butyrate, a short-chain fatty acid, can affect muscle fiber composition in pigs. To determine if a similar scenario exists in horses, 12 adult Thoroughbred geldings (7.4 ± 0.6 yr of age; mean ± SEM) were fed 16 g of calcium butyrate (CB) or an equivalent amount of carrier (CON) daily for 30 d in a crossover design. Middle gluteal muscle biopsies were collected before and after the feeding trial for immunohistochemical determination of fiber type, and RNA and protein isolation. After 30 d, CB increased (P < 0.05) the percentage of type IIA fibers and tended (P = 0.13) to reduce the numbers of type IIX fibers in comparison to control (CON). No changes (P > 0.05) in type I, IIA, or IIX fiber size were observed in response to CB. No differences (P > 0.05) were noted in the abundance of succinate dehydrogenase (SDH) protein or activity between horses receiving CB or CON. Myogenin mRNA abundance was unaffected (P > 0.05) by 30 d of CB supplementation. The increase in type IIA fibers in the absence of altered mitochondrial SDH enzymatic activity suggests that CB affects myosin ATPase expression independent of altered metabolism.
Consumption of β-hydroxy β-methylbutyrate (HMB) alters muscle composition and metabolism leading to strength and agility improvements in human athletes. To determine if HMB affects athletic performance and muscle function in horses, Thoroughbred geldings were fed a control (CON; n=5) or HMB (n=6) supplement for 6 wks prior to completing a standardized exercise test (SET). Gluteus Medius (GM) muscle biopsies were obtained before the SET for fiber typing. Heart rate (HR), biceps femoris (BF) and semitendinosus (ST) surface electromyograms (EMG) and fore and hind limb metacarpophalangeal joint angles were captured at the gallop of the SET. Results demonstrate that HMB supplementation increased (P < 0.05) the percentage of type IIA and IIA/X muscle fibers in the GM with a corresponding decrease (P < 0.05) in type IIX fibers. The percentage of type I fibers was unaffected by diet. Supplementation with HMB did not result in any measurable effects on performance or biomechanical properties by comparison to CON. Supplementation with HMB resulted in an increase (P < 0.05) in ST median frequency at speeds of 10 m/s and greater. Increasing treadmill speed resulted in an increase (P < 0.05) in stride length and the maximal proximal forelimb fetlock angle, and a decrease (P < 0.05) in stance phase time of the gait cycle. Integrated EMG increased (P < 0.05) with increasing treadmill speeds for both the BF and ST with the BF exhibiting greater (P < 0.05) iEMG values than the ST. In summary, HMB increased the percentage of type IIA GM fibers which did not translate into improved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.