This contribution analyzes the widely used and well-known "intelligent driver model" (briefly IDM), which is a second order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness of solutions has, to our knowledge, never been performed. First it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to −∞ in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad-hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result practically impossible for large-scale simulations. Although well-posedness issues occur only for specific initial data, this may happen frequently when different traffic scenarios are analyzed, and especially in presence of lane-changing, on ramps and other network components as it is the case for most commonly used micro-simulators. On the other side, it is shown that well-posedness can be guaranteed by straightforward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.