The increasing heterogeneity and asymmetry in wireless network environments makes QoS guarantees in terms of delays and throughput a challenging task. In this paper, we study a novel scheduling algorithm for multipath transport called Delay Aware Packet Scheduling (DAPS) which aims to reduce the receiver's buffer blocking time considered as a main parameter to enhance the QoS in wireless environments. We develop an analytical model of maximum receiver's buffer blocking time and extend the DAPS algorithm considering implementation issues. Performance evaluations based on ns-2 simulations highlight the enhanced QoS that DAPS can provide. With reference to the classical multipath transport protocol CMT-SCTP, we observe a significant reductions of the receiver's buffer occupancy, down by 77%, and the application delay, down by 63%.
Transport protocols that can exploit multiple paths, especially MPTCP, do not match the requirements of video streaming: high average transmission delay, too strict reliability, and frequent head-of-line phenomenons resulting in abrupt throughput drops. In this paper, we address this mismatch by introducing a cross-layer scheduler, which leverages information from both application and transport layers to re-order the transmission of data and prioritize the most significant parts of the video. Our objective is to maximize the amount of video data that is received in time at the client. We show that current technologies enable the implementation of this cross-layer scheduler without much overhead.We then demonstrate the validity of our approach by studying the performance of an optimal cross-layer scheduler. The gap between the performance of the traditional scheduler versus the optimal scheduler justifies our motivation to implement a cross-layer scheduler in practice. We propose one implementation with basic cross-layer awareness. To evaluate the performance of our proposal, we aggregate a dataset of real MPTCP sessions and we use video stream encoded with HEVC. Our results show that our cross-layer proposal outperforms the traditional scheduler. Viewers not only benefit from the inherent advantages of using MPTCP (such as a better resilience to path failure) but also get a better QoE compared to the traditional scheduler.
This paper assesses whether multi-path communication can help latency-sensitive applications to satisfy the requirements of their users. We consider Concurrent Multi-path Transfer for SCTP (CMT-SCTP) and Multi-path TCP (MPTCP) and evaluate their proficiency in transporting video, gaming, and web traffic over combinations of WLAN and 3G interfaces. To ensure the validity of our evaluation, several experimental approaches were used including simulation, emulation and live experiments. When paths are symmetric in terms of capacity, delay and loss rate, we find that the experienced latency is significantly reduced, compared to using a single path. Using multiple asymmetric paths does not affect latencyapplications do not experience any increase or decrease, but might benefit from other advantages of multipath communication. In the light of our conclusions, multi-path transport is suitable for latency-sensitive traffic and mature enough to be widely deployed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.