Purpose: Dental pellicle formation starts instantaneously after oral hygiene due to the adsorption of salivary proteins to all orally exposed surfaces. The pellicle acts as a physiological mediator, protects the tooth surface from mechanical damages and reduces acid-induced enamel demineralization. The aim of this pilot study is to identify and characterize individual proteomic profiles of the initial pellicle formed on dental enamel and to compare the profiles with the corresponding saliva to analyze specific adsorption patterns occurring during pellicle formation. Experimental Design: The 3-min pellicle of five subjects formed in situ on bovine enamel is eluted chemically and analyzed separately by nano-mass spectrometry. The analysis of the corresponding saliva is conducted in parallel. Results: Up to 498 pellicle proteins and up to 1032 salivary proteins are identified on an individual level. Comparison of the salivary and pellicle protein profiles demonstrates the pellicle formation to be highly individual. Nineteen proteins are significantly enriched in the 3-min pellicle of all subjects and 22 proteins are significantly depleted indicating that pellicle formation relies on selective adsorption. Conclusions and Clinical Relevance: The short-term enamel pellicle is composed of several hundreds of adsorbed salivary proteins and reveals a highly individual proteomic profile.
Purpose: The use of dental restorative materials is a routine task in clinical dentistry.Upon exposure to the oral cavity, continuous adsorption of salivary proteins and other macromolecules to all surfaces occurs, representing the first step in dental biofilm formation. Different physico-chemical properties of substrate materials potentially influence the composition of the initial biofilm, termed pellicle. This study aimed at characterizing and comparing the individual proteomic composition of the 3-min pellicle formed on bovine enamel and six restorative materials.Experimental Design: After chemical elution, pellicle proteins were identified by nano-LC-HR-MS/MS. Proteomic profiles were analyzed in terms of molecular weights, isoelectric points, molecular functions and compared to saliva to reveal substrate material-specific adsorption patterns.Results: A total of 1348 different pellicle proteins were identified, with 187-686 proteins in individual 3-min pellicles. Unexpectedly, this yielded quite similar distribution patterns independent of the substrate materials. Furthermore, overall similar fold changes were obtained for the major part of commonly enriched or depleted proteins in the pellicles. Conclusions and Clinical Relevance:The current results point to a minor role of the substrate material on the proteomic composition of the 3-min pellicle and represent core data for understanding the complex surface interactions in the oral cavity.
Members of the 14-3-3 domain family have important functions as adapter domains.Via an amphipathic groove on their protein surface they typically bind to disordered C-terminals of other proteins. Importantly, binding partners of 14-3-3 domains usually contain a phosphorylated serine or threonine residue at their binding interface and possess one of three different sequence motifs. Binding of the respective unphosphorylated versions of the peptides is typically strongly disfavored. There is a wealth of structural and thermodynamic data available for the phosphorylated forms but not for the unphosphorylated forms as the binding affinities seem to be too weak to be measurable experimentally. Here, we characterized the mechanistic details that govern the preference for the binding of phosphorylated peptides to 14-3-3η domains by means of molecular dynamics (MD) simulations. We found that the phosphate group is ideally coordinated in the binding pocket whereas the respective unphosphorylated side-chain counterpart is not. Thus, the binding preference results from the tight coordination of the phosphorylated residue at the center of the binding interface. Furthermore, MD simulations of 14-3-3η dimers showed a preference for the simultaneous binding of two phosphorylated peptides in agreement with their experimentally observed cooperativity.
Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store‐operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full‐length Stim1A functions as a dominant‐negative regulator of SOCE and ICRAC, facilitating sequence‐specific fast calcium‐dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP‐SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell‐type‐specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP‐SOCE crosstalk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.