Purpose: To 1) elucidate individual proteomic profiles of the 3-min biofilm of caries-active and caries-free individuals and 2) compare these proteomic profiles against the background of caries. Experimental design: The initial oral pellicle of 12 caries-active and 12 caries-free individuals is generated in situ on ceramics specimens. The individual, host-specific proteomic profiles of this basic pellicle layer are analyzed by a chemical elution protocol combined with an elaborate mass spectrometry and evaluated bioinformatically. Results: A total of 1188 different proteins are identified. Additionally, 68 proteins are present in the profiles of all individuals, suggesting them as ubiquitously occurring base-proteins of the initial human pellicle. Thereof, the single profiles exhibit high inter-individual differences independent of their group affiliation, stating the initial pellicle to represent a rather "individual fingerprint". Quantitative analyses imply slight indication for 23 proteins potentially capable of counting for caries-specific biomarkers. Conclusions and clinical relevance: The introduced protocol enables the individual analysis of minimal protein amounts and allows for highly precise characterizations and comparisons of individual proteomic profiles. The results contain a considerable higher extent of protein identifications and might serve as a base for future large scale analyzes to identify discrimination factors for the development of caries susceptibility tests.
Purpose: Dental pellicle formation starts instantaneously after oral hygiene due to the adsorption of salivary proteins to all orally exposed surfaces. The pellicle acts as a physiological mediator, protects the tooth surface from mechanical damages and reduces acid-induced enamel demineralization. The aim of this pilot study is to identify and characterize individual proteomic profiles of the initial pellicle formed on dental enamel and to compare the profiles with the corresponding saliva to analyze specific adsorption patterns occurring during pellicle formation. Experimental Design: The 3-min pellicle of five subjects formed in situ on bovine enamel is eluted chemically and analyzed separately by nano-mass spectrometry. The analysis of the corresponding saliva is conducted in parallel. Results: Up to 498 pellicle proteins and up to 1032 salivary proteins are identified on an individual level. Comparison of the salivary and pellicle protein profiles demonstrates the pellicle formation to be highly individual. Nineteen proteins are significantly enriched in the 3-min pellicle of all subjects and 22 proteins are significantly depleted indicating that pellicle formation relies on selective adsorption. Conclusions and Clinical Relevance: The short-term enamel pellicle is composed of several hundreds of adsorbed salivary proteins and reveals a highly individual proteomic profile.
Purpose: The use of dental restorative materials is a routine task in clinical dentistry.Upon exposure to the oral cavity, continuous adsorption of salivary proteins and other macromolecules to all surfaces occurs, representing the first step in dental biofilm formation. Different physico-chemical properties of substrate materials potentially influence the composition of the initial biofilm, termed pellicle. This study aimed at characterizing and comparing the individual proteomic composition of the 3-min pellicle formed on bovine enamel and six restorative materials.Experimental Design: After chemical elution, pellicle proteins were identified by nano-LC-HR-MS/MS. Proteomic profiles were analyzed in terms of molecular weights, isoelectric points, molecular functions and compared to saliva to reveal substrate material-specific adsorption patterns.Results: A total of 1348 different pellicle proteins were identified, with 187-686 proteins in individual 3-min pellicles. Unexpectedly, this yielded quite similar distribution patterns independent of the substrate materials. Furthermore, overall similar fold changes were obtained for the major part of commonly enriched or depleted proteins in the pellicles.
Conclusions and Clinical Relevance:The current results point to a minor role of the substrate material on the proteomic composition of the 3-min pellicle and represent core data for understanding the complex surface interactions in the oral cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.