The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.
Mitochondria in rice (Oryza sativa) are vital in expanding our understanding of the cellular response to reoxygenation of tissues after anaerobiosis, the crossroads of carbon and nitrogen metabolism, and the role of respiratory energy generation in cytoplasmic male sterility. We have combined density gradient and surface charge purification techniques with proteomics to provide an in-depth proteome of rice shoot mitochondria covering both soluble and integral membrane proteins. Quantitative comparisons of mitochondria purified by density gradients and after further surface charge purification have been used to ensure that the proteins identified copurify with mitochondria and to remove contaminants from the analysis. This rigorous approach to defining a subcellular proteome has yielded 322 nonredundant rice proteins and highlighted contaminants in previously reported rice mitochondrial proteomes. Comparative analysis with the Arabidopsis (Arabidopsis thaliana) mitochondrial proteome reveals conservation of a broad range of known and unknown function proteins in plant mitochondria, with only approximately 20% not having a clear homolog in the Arabidopsis mitochondrial proteome. As in Arabidopsis, only approximately 60% of the rice mitochondrial proteome is predictable using current organelle-targeting prediction tools. Use of the rice protein data set to explore rice transcript data provided insights into rice mitochondrial biogenesis during seed germination, leaf development, and heterogeneity in the expression of nucleus-encoded mitochondrial components in different rice tissues. Highlights include the identification of components involved in thiamine synthesis, evidence for coexpressed and unregulated expression of specific components of protein complexes, a selective anther-enhanced subclass of the decarboxylating segment of the tricarboxylic acid cycle, the differential expression of DNA and RNA replication components, and enhanced expression of specific metabolic components in photosynthetic tissues.
The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.