Observations of active dike intrusions provide present day snapshots of the magmatic contribution to continental rifting. However, unravelling the contributions of upper crustal dikes over the timescale of continental rift evolution is a significant challenge. To address this issue, we analyzed the morphologies and alignments of >1500 volcanic cones to infer the distribution and trends of upper crustal dikes in various rift basins across the East African Rift (EAR). Cone lineament data reveal along-axis variations in the distribution and geometries of dike intrusions as a result of changing tectonomagmatic conditions. In younger (<10 Ma) basins of the North Tanzanian Divergence, dikes are largely restricted to zones of rift-oblique faulting between major rift segments, referred to here as transfer zones. Cone lineament trends are highly variable, resulting from the interplay between (1) the regional stress field, (2) local magma-induced stress fields, and (3) stress rotations related to mechanical interactions between rift segments. We find similar cone lineament trends in transfer zones in the western branch of the EAR, such as the Virunga Province, Democratic Republic of the Congo. The distributions and orientations of upper crustal dikes in the eastern branch of the EAR vary during continental rift evolution. In early-stage rifts (<10 Ma), upper crustal dikes play a limited role in accommodating extension, as they are confined to areas in and around transfer zones. In evolved rift basins (>10 Ma) in Ethiopia and the Kenya Rift, rift-parallel dikes accommodate upper crustal extension along the full length of the basin.
[1] Magma transport through dikes is a major component of the development of monogenetic volcanic fields. These volcanic fields are characterized by numerous volcanic centers, each typically resulting from a single eruption. Therefore, magma must be transported from source to surface at different places, which raises the question of the relative importance of (1) the self-propagation of magma through pristine rock and (2) the control exerted by pre-existing fractures. To address this issue, we have carried out a series of analogue experiments to constrain the interaction of a propagating dike through a medium with pre-existing fractures. The experiments involved the injection of air into an elastic gelatin solid, which was previously cut into its upper part to simulate pre-existing fractures. The volume of the dikes, their distance from the fractures, and the ambient stress field were systematically varied to assess their influence on potential dike-fracture interactions. The results show that distance and angle between dikes and fractures influence these interactions and the dike trajectory. Dike geometry and dynamics are also affected by both the presence of the fractures and the dike volume; dikes propagating in between fractures tend to decelerate. In nature, interactions are expected for dikes and fractures separated by less than about 200 m, and dikes with a volume less than about 10 À2 km 3 would experience a velocity decrease. These results highlight the influence of pre-existing fractures on the mechanics and dynamics of dikes. These heterogeneities must be considered when studying the transport of magmas within the crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.