An increase in the average herd size on Australian dairy farms has also increased the labor and animal management pressure on farmers, thus potentially encouraging the adoption of precision technologies for enhanced management control. A survey was undertaken in 2015 in Australia to identify the relationship between herd size, current precision technology adoption, and perception of the future of precision technologies. Additionally, differences between farmers and service providers in relation to perception of future precision technology adoption were also investigated. Responses from 199 dairy farmers, and 102 service providers, were collected between May and August 2015 via an anonymous Internet-based questionnaire. Of the 199 dairy farmer responses, 10.4% corresponded to farms that had fewer than 150 cows, 37.7% had 151 to 300 cows, 35.5% had 301 to 500 cows; 6.0% had 501 to 700 cows, and 10.4% had more than 701 cows. The results showed that farmers with more than 500 cows adopted between 2 and 5 times more specific precision technologies, such as automatic cup removers, automatic milk plant wash systems, electronic cow identification systems and herd management software, when compared with smaller farms. Only minor differences were detected in perception of the future of precision technologies between either herd size or farmers and service providers. In particular, service providers expected a higher adoption of automatic milking and walk over weighing systems than farmers. Currently, the adoption of precision technology has mostly been of the type that reduces labor needs; however, respondents indicated that by 2025 adoption of data capturing technology for monitoring farm system parameters would be increased.
Cows milked in pasture-based automatic milking systems (AMS) have greater milking intervals than cows milked in indoor AMS. Long milking intervals greater than 16h have a negative effect on milk yield and udder health. The impact of 2 systems of pasture allocation in AMS on milking interval and yield was investigated at the FutureDairy AMS research farm (Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Camden, New South Wales, Australia) in late November to early December 2010. Two- (2WG) versus 3-way grazing (3WG) allocations per 24-h period were compared in a field study to test the hypothesis that an increase in the frequency of pasture allocation would reduce the milking interval and, therefore, increase milking frequency. The study involved the entire milking herd of 145 cows, with (mean ± SD) DIM=121±90d, 7-d average milking frequency=1.52±0.41 milkings/cow per day, and 7-d average milk yield=21.3±7.6kg/cow per day. Cows were milked using 2 DeLaval VMS milking units (DeLaval International AB, Tumba, Sweden). Cows in the 3WG treatment had 31% reduced milking interval, 40% greater milking frequency, and 20% greater daily milk production compared with 2WG. Increased milking frequency and milk production for 3WG was associated with greater utililization levels of the AMS milking units throughout the day. These results support the recommendation that, wherever possible, farmers installing AMS should incorporate sufficient infrastructure to accommodate 3WG, which provides additional flexibility with managing extremely long (and short) milking intervals.
Mastitis adversely affects profit and animal welfare in the Australian dairy industry. Electrical conductivity (EC) is increasingly used to detect mastitis, but with variable results. The aim of the present study was to develop and evaluate a range of indexes and algorithms created from quarter-level EC data for the early detection of clinical mastitis at four different time windows (7 days, 14 days, 21 days, 27 days). Historical longitudinal data collected (4-week period) for 33 infected and 139 healthy quarters was used to compare the sensitivity (Se; target >80%), specificity (Sp; target >99%), accuracy (target >90%) and timing of ‘alert’ by three different approaches. These approaches involved the use of EC thresholds (range 7.5– 10 mS/cm), testing of over 250 indexes (created ad hoc), and a statistical process-control method. The indexes were developed by combining factors (and levels within each factor), such as conditional rolling average increase, percentage of variation, mean absolute deviation, mean error %; infected to non-infected ratio, all relative to the rolling average (3–9 data points) of either the affected quarter or the average of the four quarters. Using EC thresholds resulted in Se, Sp and accuracy ranging between 47% and 92%, 39% and 92% and 51% and 82% respectively (threshold 7.5 mS/cm performed best). The six highest performing indexes achieved Se, Sp and accuracy ranging between 68% and 84%, 60% and 85% and 56% and 81% respectively. The statistical process-control approach did not generate accurate predictions for early detection of clinical mastitis on the basis of EC data. Improved Sp was achieved when the time window before treatment was reduced regardless of the test approach. We concluded that EC alone cannot provide the accuracy required to detect infected quarters. Incorporating other information (e.g. milk yield, milk flow, number of incomplete milking) may increase accuracy of detection and ability to determine early onset of mastitis.
The Australian dairy herd size has doubled over the last 20 years substantially increasing the time that farmers require for individual animal attention to monitor and intervene with events such as calving. Technology will help focus this limited labour resource on individual cows that require assistance. The objective of this experiment was to first determine the profiles of rumination duration and level of activity as determined by sensors between, and within, days around calving and second to use these data to predict the day of calving for pasture-based dairy cows. After 2 weeks from the expected calving date, 27 cows were fitted with SCR HR LD Tags, located in 40×90 m2 paddock and offered ad libitum oaten hay and 2 kg grain-based concentrate/cow per day until calving. Hourly activity and rumination data for each cow, as determined by the SCR tags, were fitted with linear mixed models and all parameters were estimated using restricted maximum likelihood. Rumination duration decreased by 33% over the day prior and the day of calving, with the decline in rumination duration starting the day prepartum. Activity levels were maintained prepartum but increased in the days postpartum. The day of calving was recorded and used to determine the gold standard positive (the day before calving) and negative (all other) dates. A threshold rumination level of 0.9 (decline in rumination duration of 10%) gave the optimal combination of 70% sensitivity and 70% specificity. This experiment shows the potential to use rumination duration to predict the day of calving and the opportunity to use sensor data to monitor animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.