We provide a new upper bound for sampling numbers $$(g_n)_{n\in \mathbb {N}}$$ ( g n ) n ∈ N associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants $$C,c>0$$ C , c > 0 (which are specified in the paper) such that $$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$ g n 2 ≤ C log ( n ) n ∑ k ≥ ⌊ c n ⌋ σ k 2 , n ≥ 2 , where $$(\sigma _k)_{k\in \mathbb {N}}$$ ( σ k ) k ∈ N is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding $$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$ Id : H ( K ) → L 2 ( D , ϱ D ) . The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of $$H^s_{\text {mix}}(\mathbb {T}^d)$$ H mix s ( T d ) in $$L_2(\mathbb {T}^d)$$ L 2 ( T d ) with $$s>1/2$$ s > 1 / 2 . We obtain the asymptotic bound $$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$ g n ≤ C s , d n - s log ( n ) ( d - 1 ) s + 1 / 2 , which improves on very recent results by shortening the gap between upper and lower bound to $$\sqrt{\log (n)}$$ log ( n ) . The result implies that for dimensions $$d>2$$ d > 2 any sparse grid sampling recovery method does not perform asymptotically optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.