International audienceEarthquake scarps associated with recent historical events have been found on the floor of the Sea of Marmara, along the North Anatolian Fault (NAF). The MARMARASCARPS cruise using an unmanned submersible (ROV) provides direct observations to study the fine-scale morphology and geology of those scarps, their distribution, and geometry. The observations are consistent with the diversity of fault mechanisms and the fault segmentation within the north Marmara extensional step-over, between the strike-slip Ganos and Izmit faults. Smaller strike-slip segments and pull-apart basins alternate within the main step-over, commonly combining strike-slip and extension. Rapid sedimentation rates of 1?3 mm/yr appear to compete with normal faulting components of up to 6 mm/yr at the pull-apart margins. In spite of the fast sedimentation rates the submarine scarps are preserved and accumulate relief. Sets of youthful earthquake scarps extend offshore from the Ganos and Izmit faults on land into the Sea of Marmara. Our observations suggest that they correspond to the submarine ruptures of the 1999 Izmit (Mw 7.4) and the 1912 Ganos (Ms 7.4) earthquakes. While the 1999 rupture ends at the immediate eastern entrance of the extensional Cinarcik Basin, the 1912 rupture appears to have crossed the Ganos restraining bend into the Sea of Marmara floor for 60 km with a right-lateral slip of 5 m, ending in the Central Basin step-over. From the Gulf of Saros to Marmara the total 1912 rupture length is probably about 140 km, not 50 km as previously thought. The direct observations of submarine scarps in Marmara are critical to defining barriers that have arrested past earthquakes as well as defining a possible segmentation of the contemporary state of loading. Incorporating the submarine scarp evidence modifies substantially our understanding of the current state of loading along the NAF next to Istanbul. Coulomb stress modeling shows a zone of maximum loading with at least 4?5 m of slip deficit encompassing the strike-slip segment 70 km long between the Cinarcik and Central Basins. That segment alone would be capable of generating a large-magnitude earthquake (Mw 7.2). Other segments in Marmara appear less loaded
We develop a kinematic model for the transition from subduction beneath the North Island, New Zealand, to strike‐slip in the South Island, constrained by GPS velocities and active fault slip data. To interpret these data, we use an approach that inverts the kinematic data for poles of rotation of tectonic blocks and the degree of interseismic coupling on faults in the region. Convergence related to the Hikurangi subduction margin becomes very low offshore of the northern South Island, indicating that in this region the majority of the relative plate motion has been transferred onto faults within the upper plate, as suggested by previous studies. This result has implications for understanding the likely extent of subduction interface earthquake rupture in central New Zealand. Easterly trending strike slip faults (such as the Boo Boo fault) are the key features that facilitate the transfer of strike‐slip motion from the northern South Island faults further north into the southern North Island and onto the Hikurangi subduction thrust. Our results also indicate that the transition from rapid forearc rotation adjacent to the Hikurangi subduction margin to a strike‐slip dominated plate boundary (with negligible vertical‐axis rotation) in the South Island occurs via a crustal‐scale hinge or kink in the upper plate, compatible with paleomagnetic and structural geological data. Despite the ongoing tectonic evolution of the central New Zealand region, our study highlights a remarkable consistency between data sets spanning decades (GPS), thousands of years (active faulting data), and millions of years (paleomagnetic data and bedrock structure).
Active fault traces are a surface expression of permanent deformation that accommodates the motion within and between adjacent tectonic plates. We present an updated national-scale model for active faulting in New Zealand, summarize the current understanding of fault kinematics in 15 tectonic domains, and undertake some brief kinematic analysis including comparison of fault slip rates with GPS velocities. The model contains 635 simplified faults with tabulated parameters of their attitude (dip and dip-direction) and kinematics (sense of movement and rake of slip vector), net slip rate and a quality code. Fault density and slip rates are, as expected, highest along the central plate boundary zone, but the model is undoubtedly incomplete, particularly in rapidly eroding mountainous areas and submarine areas with limited data. The active fault data presented are of value to a range of kinematic, active fault and seismic hazard studies.
[1] A new interpretation of active faulting in central Cook Strait, New Zealand, reveals tectonic structures associated with the spatial transition from subduction to continental transform faulting. Marine seismic reflection profiles and multibeam bathymetric data indicate that there are no throughgoing crustal faults connecting the North Island Dextral Fault Belt and the Marlborough Fault System in South Island. The major faults terminate offshore, associated with 5-20 km wide step-overs and a change in regional fault strike. This structure implies that propagation of strike-slip earthquake ruptures across the strait is not probable. Faulted sedimentary sequences in the Wairau Basin (Marlborough shelf), correlated to glacioeustatic sea level cycles, provide a stratigraphic framework for fault analysis. A high-resolution study of the postglacial (<20 ka) vertical displacement history of the Cloudy and Vernon faults reveals up to six and five paleoearthquakes since 18 ka, respectively. These long-timescale records indicate variable recurrence intervals and possibly variable stress drop, thus conforming to the variable slip model of earthquake behavior. Integration of these data with other submarine and terrestrial paleoearthquake records indicates the presence of clustered earthquake sequences involving multiple faults. Different sequences do not always involve the same faults. It appears that earthquake clustering is driven by fault interactions that lead to specific loading conditions favoring the triggering of earthquakes on major faults in relatively short time intervals. Present-day regional Coulomb stress distribution has been calculated in two scenarios considered to represent minimum and maximum loading conditions. The models, incorporating secular tectonic loading and stress changes associated with major crustal earthquakes, indicate high stress loading in a large part of central Cook Strait. These conditions may favor the triggering of future damaging earthquakes in this region.Citation: Pondard, N., and P. M. Barnes (2010), Structure and paleoearthquake records of active submarine faults, Cook Strait, New Zealand: Implications for fault interactions, stress loading, and seismic hazard,
25 pages, 15 figures, 1 tableauInternational audienceThe deep, northern, part of the Sea of Marmara (northwestern Turkey) is composed of several aligned, actively subsiding, basins, which are the direct structural and morphological expression of the North Anatolian Fault's northern branch. The last 20 kyr of their sedimentary fill (lacustrine before 12 kyr BP) have been investigated through giant piston coring onboard R/V MARION-DUFRESNE (MARMACORE Cruise, 2001) and chirp subbottom profiler onboard R/V ATALANTE during MARMARASCARPS Cruise (2002). Especially during the lacustrine stage, the infilling of the deep basins (Tekirda?, Central, Kumburgaz, and Çinarcic Basins; up to 1250 m depth) was dominated by turbidites (with coarse mixed siliciclastic and bioclastic basal part), intercalated in “hemipelagic-type” finegrained calcareous and slightly siliceous clays. Often – especially in the thickest ones – the turbidites show strong segregation and a sharp boundary between coarse part and suspendedload part. In the Central Basin, 8 m of a unique sedimentary event include a 5 to 8m-thick “homogenite” well imaged on seismic profiles. The latter is interpreted as related to a major – possibly triggered - tsunami effect, as described in the Eastern Mediterranean by Kastens and Cita (1981). In the marine (Holocene) upper part of the sedimentary fill, repeated to-and-from structures, affecting silt or fine sand, are evidencing seiche-like effects and, thus, earthquake triggering. Detailed correlations between two deep coring sites (1250 and 1200 m) indicate more than 100 % overthickening in the deepest one; this implies specific processes of distribution of terrigenous input by dense hyperpycnal currents (high kinetic energy, seiche effect, complex reflections on steep slopes). The peculiar sedimentary infilling of the Sea of Marmara's Central Basin (and, by extrapolation, of the whole set) is tentatively interpreted as a direct consequence of the strong seismic activity; the imprint of the latter is more obvious prior to the base of the Holocene, as environmental conditions favoured marginal accumulation (especially on the southern shelf) of large amounts of erosion products available for mass wasting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.