Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications.
The nuclear factor kappa B (NF-κB) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-κB, illustrated by proteasome-dependent degradation of the inhibitory NF-κB regulator IκB and nuclear translocation and phosphorylation of the NF-κB subunit p65. PRV-induced persistent activation of NF-κB does not result in expression of negative feedback loop genes, like the gene for IκBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-κB activation. Hence, PRV infection triggers persistent NF-κB activation in an unorthodox way and dramatically modulates the NF-κB signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-κB signaling, which may aid the virus in modulating early proinflammatory responses in the infected host. IMPORTANCE The NF-κB transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-κB, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-κB activation shares some mechanistic features with canonical NF-κB activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IκB kinase (IKK) and even renders infected cells resistant to canonical NF-κB activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-κB activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-κB activation.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is responsible for a devastating immunosuppressive disease affecting juvenile domestic chickens. IBDV particles are naked icosahedrons enclosing a bipartite double-stranded RNA genome harboring three open reading frames (ORF). One of these ORFs codes for VP5, a non-structural polypeptide dispensable for virus replication in tissue culture but essential for IBDV pathogenesis. Using two previously described recombinant viruses, whose genomes differ in a single nucleotide, expressing or not the VP5 polypeptide, we have analyzed the role of this polypeptide during the IBDV replication process. Here, we show that VP5 is not involved in house-keeping steps of the virus replication cycle; i.e. genome transcription/replication, protein translation and virus assembly. Although infection with the VP5 expressing and non-expressing viruses rendered similar intracellular infective progeny yields, striking differences were detected on the ability of their progenies to exiting infected cells. Experimental data shows that the bulk of the VP5-expressing virus progeny efficiently egresses infected cells during the early phase of the infection, when viral metabolism is peaking and virus-induced cell death rates are as yet minimal, as determined by qPCR, radioactive protein labeling and quantitative real-time cell death analyses. In contrast, the release of the VP5-deficient virus progeny is significantly abridged and associated to cell death. Taken together, data presented in this report show that IBDV uses a previously undescribed VP5-dependent non-lytic egress mechanism significantly enhancing the virus dissemination speed. Ultrastructural analyses revealed that newly assembled IBDV virions associate to a vesicular network apparently facilitating their trafficking from virus assembly factories to the extracellular milieu, and that this association requires the expression of the VP5 polypeptide.
The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors including virus infections, and triggers a powerful (pro-inflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as “inside-out” NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a non-canonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE: The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights in the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar “inside-out’ nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (pro-inflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host-driven and that its potential antiviral consequences are actively inhibited by the virus.
Production of the antibiotic actinorhodin was activated in Streptomyces lividarts under conditions in which it is not normally produced when transformed with an activator gene from S. lividans. The gene encodes a Sdnucleotide transcript, responsible for the actinorhodin production phenotype, which is homologous to the 132 nucleotide transcript from S. fradiae, thought to act as a putative antisense RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.