Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.
Tunneling times in atomic ionization are studied theoretically by a virtual detector approach. A virtual detector is a hypothetical device that allows one to monitor the wave function's density with spatial and temporal resolution during the ionization process. With this theoretical approach, it becomes possible to define unique moments when the electron enters and leaves with highest probability the classically forbidden region from first principles and a tunneling time can be specified unambiguously. It is shown that neither the moment when the electron enters the tunneling barrier nor when it leaves the tunneling barrier coincides with the moment when the external electric field reaches its maximum. Under the tunneling barrier as well as at the exit the electron has a nonzero velocity in the electric field direction. This nonzero exit velocity has to be incorporated when the free motion of the electron is modeled by classical equations of motion.
In strong-field ionization interferences between electron trajectories create a variety of interference structures in the final momentum distributions. Among them, the interferences between electron pathways that are driven directly to the detector and the ones that rescatter significantly with the parent ion lead to holography-type interference patterns that received great attention in recent years. In this work, we study the influence of the magnetic field component onto the holographic interference pattern, an effect beyond the electric dipole approximation, in experiment and theory. The experimentally observed nondipole signatures are analyzed via quantum trajectory Monte Carlo simulations. We provide explanations for the experimentally demonstrated asymmetry in the holographic interference pattern and its non-uniform photoelectron energy dependence as well as for the variation of the topology of the holography-type interference pattern along the laser field direction. Analytical scaling laws of the interference features are derived, and their direct relation to either the focal volume averaged laser intensities, or to the peak intensities are identified. The latter, in particular, provides a direct access to the peak intensity in the focal volume.
When a magnetic film is excited by a femtosecond laser pulse, either with THz or with optical frequencies, then there is at least a partial demagnetization within a few hundred femtoseconds, followed by a remagnetization to the original state on a bit longer time scale. This phenomenon is caused by a complex interaction of light with quantum matter. This paper gives a review of the present knowledge of the underlying physics. It discusses first the situation of a direct change of the magnetization by its interaction with the electromagnetic wave of the laser pulse, which appears during THz laser pulses with small field amplitudes. Then it considers the situation of an indirect change which appears after THz laser pulses with large field amplitudes and after optical laser pulses. In these cases the laser photons primarily excite electrons, with subsequent modifications of their spin-angular momenta by spin-flip scatterings of these electrons at quasiparticles, either at other electrons or at phonons or at magnons. The contributions of these various spin-flip scatterings to demagnetization are investigated. Then the transfer of angular momentum from the electronic spin system to the lattice during ultrafast demagnetization is discussed by describing the lattice vibrations in terms of magnetoelastic spin-phonon modes. Finally, the effect of electronic correlations in the sense of the density-matrix theory is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.